scholarly journals An Assessment of Anaerobic Thermophilic Co-Digestion of Dairy Cattle Manure and Separated Tomato Greenhouse Waste in Lab-Scale Reactors

2019 ◽  
Vol 22 (2) ◽  
pp. 38-42
Author(s):  
Đurđica Kovačić ◽  
Davor Kralik ◽  
Daria Jovičić ◽  
Robert Spajić

Abstract Anaerobic co-digestion of dairy cow manure (DCM) and separated tomato greenhouse waste (tomato stalks and leaves (TSL) and rotten and damaged tomato fruits – TF) was conducted under batch thermophilic conditions (T = 55 °C) for period of 45 days. Concentrations of substrates (tomato waste) were 5 and 10% (w/v). Each substrate, as well as experimental mixtures, was analysed in order to specify the content of pH, total solids (TS), volatile solids (VS), total extractable nitrogen (TN) and total organic carbon (TOC). Biogas yield and composition, as well as cumulative biogas curves, were reported. In comparison to DCM monodigestion (329.5 cm3·g−1 VS), biogas yield was significantly improved in experiment C (365.1 cm3·g−1 VS) (with 5% (w/v) TF added), whereas methane yield did not show any significant difference. Experiment D (with 10% (w/v) TSL added) resulted in significantly lower biogas and methane yields in contrast to the rest of experiments performed. Average methane content in all analysed experimental samples ranged from 65 to 69%. It is evident from the results that biogas production can be improved by addition of separated tomato greenhouse waste to DCM process and issue of organic waste disposal could be effectively solved.

2020 ◽  
pp. 0734242X2095739
Author(s):  
Abdul-Aziz Issah ◽  
Telesphore Kabera

The study assessed the impact of volatile fatty acids (VFA) to total alkalinity (TA) ratio (VFA/TA), and percentage volatile solids (VS) reduction of batch and semi-continuous anaerobic co-digestion of palm nut paste waste (PNPW) and anaerobic-digested rumen waste (ADRW) on digester stability and biogas production under the environmental condition of 50 ± 1°C and hydraulic retention time of 21 days for the batch studies and 14 days for semi-continuous co-digestion. The co-digestion ratios were based on percentage digester volume corresponding to 90%:10%, 75%:25% and 50%:50%. During batch and semi-continuous anaerobic co-digestion, VFA/TA of 0.32–1.0 and VS reduction of 53–67% were observed as the stable range at which biogas production was maximum. In terms of semi-continuous anaerobic digestion (AD), except for the 50%:50% ratio where biogas production progressed steadily from the first to fourteenth days, biogas production initially dropped from 180.1 to 171.3 mL between the first and third days of the 90%:10% reaching a maximum of 184 mL on the fourteenth day. Biogas production declined from 198.8 to 187.5 mL on the second day and then increased to 198.8 ± 0.5 mL in the case of the 75%:25% with a significant difference between the treatment ratios at p < 0.05. Therefore, the study can confirm that the 50%:50% ratio (PNPW:ADRW) is a suitable option for managing crude fat-based waste under thermophilic AD due to its potential for rapid start-up and complete biodegradation of active biomass within a 21-day period. This presupposes that residual methane as greenhouse gas will be void in the effluent if disposed of.


2020 ◽  
Vol 181 ◽  
pp. 01005
Author(s):  
Makhura Emmanuel Pax ◽  
Edison Muzenda ◽  
Tumeletso Lekgoba

This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.


2018 ◽  
Vol 36 (11) ◽  
pp. 1100-1105 ◽  
Author(s):  
Anıl Tevfik Koçer ◽  
Didem Özçimen

In recent years, researchers focused their attention on biogas production more than ever to meet the energy demand. Especially, biogas obtained from algal wastes has become a trending research area owing to the high content of volatile solids in algae. The main purpose of this study is to determine the biogas production potential from algal wastes and examine the effect of temperature and particle size parameters on biogas yield. A comparison was made between the biogas production potential of microalgal wastes, obtained after oil extraction, and macroalgal wastes collected from coastal areas. It was found that algal biogas yield is directly proportional to temperature and inversely proportional to particle size. Optimal conditions for biogas production from algal wastes were determined as the temperature of 55 °C, a particle size of 200 μm, a residence time of 30 days and an alga–inoculum ratio of 1:4 (w:w). Highest biogas yield obtained under these conditions was found as 342.59 cm3 CH4 g−1 VS with Ulva lactuca. Under thermophilic conditions, both micro- and macroalgal biogas yields were comparable. It can be concluded that algal biomass is a good source for biogas production, although further research is needed to increase biogas yield and quality.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2019 ◽  
Vol 274 ◽  
pp. 215-224 ◽  
Author(s):  
Đurđica Kovačić ◽  
Davor Kralik ◽  
Slavko Rupčić ◽  
Daria Jovičić ◽  
Robert Spajić ◽  
...  

2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


2014 ◽  
Vol 31 (8) ◽  
pp. 843-853 ◽  
Author(s):  
Kwang-Hwa Jeong ◽  
◽  
Ho Kang ◽  
Ji-Hyun Jeong ◽  
Sun-Woo Kim ◽  
...  

2018 ◽  
Vol 172 ◽  
pp. 2313-2322 ◽  
Author(s):  
Félix Rafael Ramírez-Arpide ◽  
Göksel N. Demirer ◽  
Clemente Gallegos-Vázquez ◽  
Guadalupe Hernández-Eugenio ◽  
Vinicio Horacio Santoyo-Cortés ◽  
...  

Author(s):  
Christian C. Opurum

This research paper aimed to evaluate the kinetics of anaerobic digestion (AD) of mixtures of cabbage waste (CW) with (Poultry dropping (PD) and Cow dung (CD). The study was conducted in 10L bio-digesters for 35 days under mesophilic conditions (25 - 35OC). Logistic function equation was used to simulate the experimental data to test for its goodness of fit and kinetic parameters namely: maximum biogas potential (Pb), the maximum biogas production rate (Rm), and the lag phase duration (λ) were estimated in each treatment. Chemical analysis showed that individual substrates possess characteristics that could support microbial activities in biogas production. The biogas yield in terms of added  volatile solids (VS) in decreasing order was as follows: 0.022, 0.018, 0.017, 0.014, 0.014 and 0.013 dm3/g VS for CW/CD 2:1, CW/PD3:1, CW/CD 1:1, CW alone, CW/PD1:1 and  CW/PD 2:1, respectively. A significant difference (P ≤ 0.05) in biogas yield was recorded in CW/CD 2:1 with 7.19 dm3 (53.29% increase). The kinetic parameters (Pb, Rm, and λ) for CW/CD 2:1 was 7.01 dm3, 1.58 dm3.d, and 2.29 days, respectively. This was followed by CW/PD 3:1 (5.84 dm3); with 24.92% increase in gas production and CW/CD 1:1 (5.42 dm3) with 15.53% increase relative to CW alone, 4.69 dm3. The digesters fed with CW/PD 1:1 and CW/PD 2:1 exhibited inhibitory effects on biogas production, with 7.51 and 2.05% decrease in gas yield, respectively. The logistic function model demonstrated a strong relationship between the experimental and model-predicted data. The high correlation coefficient (R2) ranging between 0.978 - 0.993 is evident. The model proved to be a useful tool in predicting anaerobic digestion and biogas production process.


Sign in / Sign up

Export Citation Format

Share Document