scholarly journals Effect of exogenous transcription factors integration sites on safety and pluripotency of induced pluripotent stem cells

2020 ◽  
Vol 23 (1) ◽  
pp. 5-13
Author(s):  
S Yin ◽  
W Li ◽  
G Yang ◽  
Y Cheng ◽  
Q Yi ◽  
...  

AbstractInduced pluripotent stem cells (iPSCs), generated from somatic cells, not only possess similar characteristics with embryonic stem cells (ESCs), but also present more advantages than ESCs in medical applications. The classical induction method that utilizes the integration of exogenous genes into chromosomes may raise the potential risk of the safety of iPSCs. To investigate the potential correlation between the integration sites of exogenous transcription factors (TFs) and iPSCs’ pluripotency and safety, the integration of exogenous genes in three iPSC lines, which met the golden standard of murine developmental assay (tetraploid complementation), were analyzed. Twenty-two integration sites of exogenous TFs were identified by nested inverse polymerase chain reaction (iPCR) and 39 flanking genes’ functions were analyzed by gene ontology (GO). In the 22 integrated sites, 17 (77.3%) were located in the intergenic regions and the remainder were located in introns far from the transcription start sites. Microarray analysis of the flanking genes in these cells showed that there was no distinct difference in expression levels between the iPSCs, ESCs and mouse embryonic fibroblast (MEF), suggesting that the integration of exogenous TFs has no significant influence on the expression of flanking genes. Gene ontology analysis showed that although most of the flanking genes were housekeeping genes, which were necessary for basic life activity, none of these 39 flanking genes have correlation with tumorigenesis or embryogenesis, suggesting that the integration sites hold low risk of tumorigenesis.

Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5476-5479 ◽  
Author(s):  
Yuin-Han Loh ◽  
Suneet Agarwal ◽  
In-Hyun Park ◽  
Achia Urbach ◽  
Hongguang Huo ◽  
...  

Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.


2018 ◽  
pp. 9-14

La reprogramación en la obtención de células madre pluripotentes inducidas Reprogramming in obtaining induced pluripotent stem cells   Luis Fernando Tume Farfán  Universidad Nacional de Piura, Urb. Miraflores s/n, Castilla – Apartado Postal 295, Piura, Perú DOI: https://doi.org/10.33017/RevECIPeru2013.0002/ Resumen Debido a los problemas éticos que se han venido dando por el uso de embriones como fuente de células pluripotentes, se han desarrollado nuevas fuentes para obtener células con las mismas características. En esta revisión se discuten algunos métodos de reprogramación que se han sido empleados por muchos investigadores alrededor del mundo, partiendo por la trasferencia nuclear y posteriormente con el trabajo de Yamanaka quien empezó a usar la introducción de los cuatro factores de transcripción, Oct3 / 4, Sox2, Klf4 y c-Myc que origina con éxito la reprogramación de las células somáticas en células madre pluripotentes inducidas (iPSC), que poseen características genómicas y fenotípicas de células madre embrionarias, además se describe algunas desventajas que tienen estos métodos y los riesgos que involucran el uso del factor de transcripción c-Myc. A pesar de que queda mucho por mejorar en este campo, las células iPS muestran un tremendo potencial para la investigación y sus posibles aplicaciones terapéuticas en la medicina regenerativa. Descriptores: Pluripotenciales, factores de transcripción, inducidas, reprogramación. Abstract Because of the ethical problems that have been taking for the use of embryos as a source of pluripotent cells , we have developed new sources for cells with the same characteristics. In this review we discuss some reprogramming methods that have been employed by many researchers around the world , starting with the nuclear transfer and later with the work of Yamanaka who began using the introduction of four transcription factors , Oct3 / 4 , Sox2 , Klf4 and c- Myc that originates successful reprogramming of somatic cells into induced pluripotent stem cells ( iPSC ) , which have genomic and phenotypic characteristics of embryonic stem cells , and discusses some drawbacks with these methods and the risks involve the use of the transcription factor c -Myc . Although much room for improvement in this field, iPS cells show a tremendous potential for research and potential therapeutic applications in regenerative medicine. Keywords: Keywords: Pluripotent transcription factors, induced, reprogramming.


2017 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogrammed human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers of reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSCs generation. Distinct barriers and enhancers of reprogramming have been elucidated and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSCs field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraised the role of genomic editing technology in the generation of healthy iPSCs.


2017 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogrammed human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers of reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSCs generation. Distinct barriers and enhancers of reprogramming have been elucidated and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSCs field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraised the role of genomic editing technology in the generation of healthy iPSCs.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4370 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Sign in / Sign up

Export Citation Format

Share Document