scholarly journals The vibration of prototype aircraft propeller speed reduction unit – test bench and FEM numerical simulation study

2014 ◽  
Vol 62 (4) ◽  
pp. 861-873
Author(s):  
W. Ostapski ◽  
A. Aromiński ◽  
S. Dowkontt

Abstract The results of torsional shaft vibration bench tests for a prototype aircraft propeller speed reduction unit are presented in this paper. The study was conducted as a function of engine speed and lubrication conditions. 3D model of the propeller speed reduction unit was developed. By using the finite element method, normal modes frequencies were defined. The simulation was conducted both unloaded and loaded under nominal power conditions.

2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


2021 ◽  
pp. 22-26
Author(s):  

The scientific and methodological foundations of the design of mechanical transmission units of transport and technological machines, adapted for diagnosing the operability by thermometry parameters, based on the results of bench tests and simulation modeling by the finite element method, are considered. An algorithm is developed for the design testing of power units for adaptability to thermometric non-destructive testing. Keywords: design, controllability, diagnostics, thermometry, finite element method [email protected]


2018 ◽  
Vol 8 (8) ◽  
pp. 1338 ◽  
Author(s):  
José Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes the first self-propelled floating dredging machine designed and executed by Agustín de Betancourt in 1810 to dredge the port of Kronstadt (Russia). With this objective, a study of computer-aided engineering (CAE) has been carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite element method, of the 3D model which is reliable under operating conditions. The results have shown that the system of inertia drums proposed by Betancourt manages to dissipate the tensions between the different elements, locating the highest stresses in the links of the bucket rosary, specifically at the point of contact between links. Similarly, the maximum displacements and the greatest deformations (always associated with these points of greater stress), are far from reaching the limits of breakage of the material used in its construction, as well as the safety coefficient of the invention, confirming that the mechanism was oversized, as was generally the case at the time. This analysis highlights the talent of the Spanish engineer and his mastery of mechanics, in an invention, the first of its kind worldwide, which served the Russian Empire for many years.


2011 ◽  
Vol 383-390 ◽  
pp. 5669-5673
Author(s):  
Song Ling Wang ◽  
Zhe Sun ◽  
Zheng Ren Wu

For the large centrifugal fan impeller, its working condition generally is bad, and its geometry generally is complex. So its displacements and stresses distribution are also complex. In this paper, we can obtain the fan impeller’s displacements and stresses distribution accurately through numerical simulation in G4-73 type centrifugal fan impeller using the finite element method software ANSYS. The calculation result shows that the maximum total displacement of the impeller is m, it occurs on the position of the half of the blade near the outlet of the impeller; and the maximum equivalent stress of the impeller is 193 MPa, it occurs on the contacted position of the blade and the shroud near inlet of the impeller. Furthermore, check the impeller strength, the result shows that the strength of the impeller can meet the requirement.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


Sign in / Sign up

Export Citation Format

Share Document