scholarly journals On Rough Set Theory on Achieving High Quality Cable Material Production by Green Low Carbon Technology

2021 ◽  
Vol 28 (1) ◽  
pp. 49-59
Author(s):  
Guoliang Shuai ◽  
Zhen Li ◽  
Diantao Zhang ◽  
Maged Elhefnawey ◽  
Li Li

Abstract As the second largest machinery industry, the energy-intensive cable industry not only creates a lot of economic value but also consumes a lot of energy. It is an inevitable requirement to promote the technological development of the industry in the new era to improve the quality and efficiency and realise industrial energy-saving and consumption reduction. In order to obtain good strength and conductivity, the metal rods of cable are usually heat-treated for several hours or even several days after the rods are extruded, this is a major energy consuming process in traditional production. Based on the background, this study adopted the energy-saving equal-channel angular pressing (ECAP) technology to replace the traditional heating treatment process, and converted the simple heat conduction with thermo-mechanical energy transfer, so as to realise the good strength and conductivity matching of the cable aluminum alloy material. In this study, energy-saving ECAP technology is used to replace the traditional heat treatment process, and heat-mechanical energy transfer is used to replace the simple heat conduction, so as to achieve good strength and conductivity matching of cable aluminum alloy material. The results show that the suitable ECAP process routes can improve the microstructure of aluminum alloy with higher strength and conductivity than the traditional heating process. The research results can be used for technology upgrading and low carbon production in cable industry due to the significantly time reduction of the energy-consuming heat treatment and the high-efficient obtainment of high-quality production.

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110378
Author(s):  
Zhensen Ding ◽  
Haifeng Fang ◽  
Bin Liu ◽  
Zhanhui Yao ◽  
Jinzhou Liu

Lightweight of body-in-white (BIW) can effectively achieve energy saving and emission reduction, is an important component of automobile lightweight, and how to ensure better economy while lightweight has attracted wide attention from industry and academia. This study deeply analyzed the stages of the full life cycle of internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV), deconstructs the stages where the weight of BIW has a greater impact on the two, and introduces the concept of full-cycle closed-loop flow of materials to establish universal “Energy-Environment-Economy” Evaluation Model, also called 3E assessment model for auto components. In addition, the 3E-PSI model is established in combination with the PSI method, which further makes up for the shortcomings of the general 3E model that cannot select the optimal solution by considering energy consumption, emissions, and economy comprehensively. The 3E-PSI analysis of material lightweight of BIW is conducted, which takes the ICEV and BEV on the same platform as an example. The results show that in terms of energy consumption, the magnesium alloy BIW of the ICEV is the lowest, however, the aluminum alloy BIW of the BEV is the lowest. In terms of environmental emissions, magnesium alloy BIW is the lowest in both ICEV and BEV, which are 57% and 59.56% of ordinary mild steel BIW respectively; As far as economy is concerned, the ICEV have break-even points for all lightweight materials in the total mileage during lifetime, and the BEV only has a break-even point, that is, driving 78625.68 km, the cost of high-strength steel BIW is lower than ordinary low-carbon steel. In addition, the comprehensive optimal scheme of ICEV is BIW of magnesium alloy material, and the comprehensive optimal scheme of BEV is BIW of aluminum alloy material.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2205-2208
Author(s):  
Nan Li

With the rapid development of national economy, energy saving, emission reduction and low carbon economy is paid more and more attention, the construction is the major energy consuming of all energy intensive industries, energy saving and emission reduction of underground building which is represent the general trend, this paper is based on the analysis of the characteristics of the underground space, the effective energy saving measures from the lighting, ventilation are proposed, in order to achieve the best effect to reduce the energy consumption.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1396-1405
Author(s):  
Arwa F. Tawfeeq ◽  
Matthew R. Barnett

The development in the manufacturing of micro-truss structures has demonstrated the effectiveness of brazing for assembling these sandwiches, which opens new opportunities for cost-effective and high-quality truss manufacturing. An evolving idea in micro-truss manufacturing is the possibility of forming these structures in different shapes with the aid of elevated temperature. This work investigates the formability and elongation of aluminum alloy sheets typically used for micro-truss manufacturing, namely AA5083 and AA3003. Tensile tests were performed at a temperature in the range of 25-500 ○C and strain rate in the range of 2x10-4 -10-2 s-1. The results showed that the clad layer in AA3003 exhibited an insignificant effect on the formability and elongation of AA3003. The formability of the two alloys was improved significantly with values of m as high as 0.4 and 0.13 for AA5083 and AA3003 at 500 °C. While the elongation of both AA5083 and AA3003 was improved at a higher temperature, the elongation of AA5083 was inversely related to strain rate. It was concluded that the higher the temperature is the better the formability and elongation of the two alloys but at the expense of work hardening. This suggests a trade-off situation between formability and strength. 


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Bridgeport 54 is a copper-zinc-aluminum alloy having high corrosion and erosion resistance combined with good strength and ductility. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Cu-141. Producer or source: Bridgeport Brass Company.


Alloy Digest ◽  
1988 ◽  
Vol 37 (12) ◽  

Abstract UNS H-86170 is a low-carbon nickel-chromium-molybdenum carburizing steel of good hardenability. Its core is characterized by good strength and toughness. It is recommended for heavy-duty applications such as cams, chains, fasteners, gears, shafts and piston pins. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-435. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1987 ◽  
Vol 36 (6) ◽  

Abstract WEIRKOTE PLUS is a Galfan-coated sheet steel. The sheet is conventional low-carbon steel normally used for galvanized sheets and strip. This digest will concentrate on the characteristics and properties of the Galfan coating which is nominally a 95% zinc-5% aluminum alloy. The coating on Weirkote Plus is ideal for a variety of tough applications. It is excellent for products that require deep drawing and it combines extra corrosion resistance with superior formability. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Zn-41. Producer or source: Weirton Steel Corp.


2010 ◽  
Vol 654-656 ◽  
pp. 1420-1423 ◽  
Author(s):  
Chun Wei Su ◽  
Peng Hooi Oon ◽  
Y.H. Bai ◽  
Anders W.E. Jarfors

The liquid forging process has the flexibilities of casting in forming intricate profiles and features while imparting the liquid forged components with superior mechanical strength compared to similar components obtained via casting. Additionally, liquid forging requires significantly lower machine loads compared to solid forming processes. Currently, components that are formed by liquid forging are usually casting alloys of aluminum. This paper investigates the suitability of liquid forging a wrought aluminum alloy Al-6061 and the mechanical properties after forming. The proper handling of the Al-6061 alloy in its molten state is important in minimizing oxidation of its alloying elements. By maintaining the correct alloying composition of Al-6061 after liquid forging, these Al-6061 samples can subsequently undergo a suitable heat treatment process to significantly improve their yield strengths. Results show that the yield strengths of these liquid forged Al-6061 samples can be increased from about 90MPa, when they are in the as-liquid forged state, to about 275MPa after heat treatment. This improved yield strength is comparable to that of Al-6061 samples obtained by solid forming processes. As such, the liquid forging process here has been shown to be capable of forming wrought aluminum alloy components that has the potential for structural applications.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1109-1114
Author(s):  
Xin Lei ◽  
Hui Huang ◽  
S.P. Wen

This study investigated the mechanical properties and microstructures of Er-containing Al–Mg alloys. The research found that the H114-T sheet of Er-containing Al–Mg alloys showed a relative good comprehensive performance in mechanical properties. With the special rolling and heat treatment process, this H114-T sheet showed different morphology of microstructures with the other sheets in Er-containing Al–Mg alloys. Grains in H114-T sheet performed irregular shape polygon, a number of subgrains appeared in grains, the amount of dislocations in grains decreased. H114-T sheet possessed a lot of Copper texture, this may be one of important factors influenced the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document