scholarly journals Trends in forest fuel accumulation in pine forests of Kyiv Polissya in Ukraine

2021 ◽  
Vol 63 (2) ◽  
pp. 116-124
Author(s):  
Roman V. Hurzhii ◽  
Petro P. Yavorovskyi ◽  
Serhii Н. Sydorenko ◽  
Valery B. Levchenko ◽  
Olexandr M. Tyshchenko ◽  
...  

Abstract At present, forest fire research is becoming especially relevant in Ukraine. This study examines patterns of forest fuel accumulation in pine (Pinus sylvestris L.) stands that grow in different soil conditions with different pine stand structure. To estimate the load of forest fuel of different fractions, a combined methodology was used: the weighing method and the FIREMON (fuel load estimation) method. It was found that increase in surface forest fuel loads is not directly proportional to forest stands’ age. Fractional size distribution, capacity and loads of forest fuel depend on several factors, among which the greatest role is played by forestry characteristics of the pine stand. It was determined that in the forest site conditions of type C (fairly rich soils) in Kyiv Polissya, the share of forest litter compared to pine stands that grow in poor soil conditions (A) is smaller, ranging from 41% to 76% of the total forest fuel load. The mass proportion of the duff layer varies from 15% in young forest stands to 43% in mature stands. It was established that changes in forest fuel fractions for 1, 10, 100 and 1000 hours varied insignificantly with age rate. The share of substratum woody debris of 10 and 100 hours was insignificant and depended more on the forestry treatment regime on these sites. The mass proportion of coarse woody debris (1000 hours) was also insignificant, varying from 0% to 5.9% of the total load of surface fuel.

2021 ◽  
Author(s):  
Lukas R Jarron ◽  
Nicholas C Coops ◽  
William H MacKenzie ◽  
Pamela Dykstra

Abstract Coarse woody debris (CWD) is a meaningful contributor to forest carbon cycles, wildlife habitat, and biodiversity and can influence wildfire behavior. Using airborne laser scanning (ALS), we map CWD across a range of natural forest stand types in north-central British Columbia, Canada, providing forest managers with spatially detailed information on the presence and volume of ground-level woody biomass. We describe a novel methodology that isolates CWD returns from large diameter logs (>30cm) using a refined grounding algorithm, a mixture of height and pulse-based filters and linear pattern recognition, to transform ALS returns into measurable, vectorized shapes. We then assess the accuracy of CWD detection at the individual log level and predict CWD volume at the plot level. We detected 64% of CWD logs and 79% of CWD volume within our plots. Increased elevation of CWD significantly aided detection (P = 0.04), whereas advanced stages of decay hindered detection (P = 0.04). ALS-predicted CWD volume totals were compared against field-measured CWD and displayed a strong correlation (R = 0.81), allowing us to expand the methodology to map CWD over a larger region. The expanded CWD volume map compared ALS volume predictions between stands and suggests greater volume in stands with older and more heterogeneous stand structure. Study Implications A methodology is presented to extract returns associated with large diameter coarse woody debris (CWD) directly from an ALS point cloud. These returns are transformed into measurable shapes and their volume estimated based on the height of the returns. The procedure is implemented over a large forested area to produce a map of local CWD volume. Production of these maps can be used to generate inventory of CWD over a range of natural forest stands to support a more well-rounded understanding of carbon levels associated with downed trees, wildlife habitat attributes, and fuel loading in the terrestrial biosphere.


2021 ◽  
pp. e01637
Author(s):  
Francesco Parisi ◽  
Michele Innangi ◽  
Roberto Tognetti ◽  
Fabio Lombardi ◽  
Gherardo Chirici ◽  
...  

2016 ◽  
Vol 11 (2) ◽  
pp. 466-476
Author(s):  
Bijendra Lal ◽  
L.S. Lodhiyal

Present study deals with stand structure, biomass, productivity and carbon sequestration in oak dominated forests mixed with other broad leaved tree species. The sites of studied forests were located in Nainital region between 29058’ N lat. and 79028’ E long at 1500-2150 m elevation. Tree density of forests ranged from 980-1100 ind.ha-1. Of this, oak trees shared 69-97%. The basal area of trees was 31.81 to 63.93 m2 ha-1. R. arboreum and Q. floribunda shared maximum basal area 16.45 and 16.32 m2 ha-1, respectively in forest site-1 and 2 while Quercus leucotrichophora shared maximum (35.69 m2 ha-1) in site-3. The biomass and primary productivity of tree species ranged from 481-569 t ha-1 and 16.9-20.9 t ha-1yr-1, respectively. Of this, biomass and primary productivity of oak tree species accounted for 81 to 95 and 78 to 98%, respectively. Carbon stock and carbon sequestration ranged from 228 to 270 t ha-1 and 8.0 to 9.9 t ha-1yr-1, respectively. The share of oak tree species ranged from 81 to 94.7 and 79 to 97%, respectively. The diversity of tree species ranged from 0.03 to 0.16 in forest sites-1, 2 and 3. The diversity of oak species was 0.08-0.16 in all the forest sites. Thus it is concluded that among the oak tree species, Quercus floribunda and Quercus leucotrichophora were highly dominated in the studied forests. The climax form of oak dominated trees in the studied forest sites depicted slightly lower richness and diversity of tree species compared to the forests in the region and elsewhere. As far as dry matter and carbon of forests is concerned, these estimates are close to the earlier reports of forests in the region. Therefore, studied forests have the potential to increase the diversity, productivity and carbon sequestration of forest tree species by providing the adequate scientific conservation and management inputs.


2015 ◽  
Vol 76 (4) ◽  
pp. 322-330 ◽  
Author(s):  
Konrad Skwarek ◽  
Szymon Bijak

Abstract Dead wood plays an important role for the biodiversity of forest ecosystems and influences their proper development. This study assessed the amount of coarse woody debris in municipal forests in Warsaw (central Poland). Based on the forest site type, dominant tree species and age class, we stratified all complexes of the Warsaw urban forests in order to allocate 55 sample plots. For these plots, we determined the volume of dead wood including standing dead trees, coarse woody debris and broken branches as well as uprooted trees. We calculated the amount of dead wood in the distinguished site-species-age layers and for individual complexes. The volume of dead matter in municipal forests in Warsaw amounted to 38,761 m3, i.e. 13.7 m3/ha. The obtained results correspond to the current regulations concerning the amount of dead organic matter to be left in forests. Only in the Las Bielański complex (northern Warsaw) volume of dead wood is comparable to the level observed in Polish national parks or nature reserves, which is still far lower than the values found for natural forests. In general, municipal forests in Warsaw stand out positively in terms of dead wood quantity and a high degree of variation in the forms and dimensions of dead wood.


Author(s):  
Kellen Nelson ◽  
Daniel Tinker

Understanding how live and dead forest fuel moisture content (FMC) varies with seasonal weather and stand structure will improve researchers’ and forest managers’ ability to predict the cumulative effects of weather on fuel drying during the fire season and help identify acute conditions that foster wildfire ignition and high rates of fire spread. No studies have investigated the efficacy of predicting FMC using mechanistic water budget models at daily time scales through the fire season nor have they investigated how FMC may vary across space. This study addresses these gaps by (1) validating a novel mechanistic live FMC model and (2) applying this model with an existing dead FMC model at three forest sites using five climate change scenarios to characterize how FMC changes through time and across space. Sites include post-fire 24-year old forest, mature forest with high canopy cover, and mature forest affected by the mountain pine beetle with moderate canopy cover. Climate scenarios include central tendency, warm/dry, warm/wet, hot/dry, and hot/wet.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 353 ◽  
Author(s):  
Horodecki ◽  
Jagodziński

Research Highlights: Direct comparison of leaf litter decomposition rates between harsh soil conditions of degraded lands and adjacent “closer to natural” forest areas has not been done before. Background and Objectives: We aimed to fill this knowledge gap by determining the differences in amounts of carbon and nitrogen released by species-specific litter depending on decomposition rates in various stand and habitat conditions, which enables selection of the most ecologically and economically appropriate (for fast soil organic layer development) tree species for afforestation of reclaimed lands. Materials and Methods: The study was conducted on the external spoil heap of the “Bełchatów” lignite mine (Central Poland) and adjacent forests. In December 2013, we established a litterbag experiment beneath the canopies of birch and pine stands. We used litter of Alnus glutinosa (Gaertn.), Betula pendula (Roth), Pinus sylvestris (L.), and Quercus robur (L.) collected ex situ, which we installed (after oven-drying) beneath the canopies of eight stands. The experiment lasted for three years (with sampling of three-month intervals). Results: Harsh soil conditions of degraded lands are unfavorable for litter mineralization. It was found that 23%–74% of decomposed materials were mineralized in spoil heap stands, whereas in forest stands these amounts ranged from 35%–83%. Litter of Q. robur in birch stands on the spoil heap is predicted to take 12 years longer for total decomposition than in forest stands of the same species. This hinders organic carbon turnover and could result in elongation of the time for full biological and economic reclamation of degraded lands. On the other hand, decomposition of relatively fast decomposable litter (A. glutinosa and B. pendula) in pine stands on the spoil heap was faster than in pine stands in forest sites (17% and 13% faster, respectively). We did not observe this trend for decomposition of more recalcitrant litter types of P. sylvestris and Q. robur. Conclusions: The results show the value of selective choice of tree species for afforestation of post-mining areas to accelerate the development of technogenic soil substrates. We recommend introducing all tree species studied in the cluster form of admixtures as all of them could bring some profits in ecological and economical reclamation.


2001 ◽  
Vol 31 (6) ◽  
pp. 978-987 ◽  
Author(s):  
J M Kranabetter ◽  
P Kroeger

We examined epigeous ectomycorrhizal mushroom richness and productivity after partial cutting in a western hemlock (Tsuga heterophylla (Raf.) Sarg.) - western redcedar (Thuja plicata Donn ex D. Don in Lamb.) forest of northwestern British Columbia. Mushrooms were collected throughout the fruiting season (July to October) for 3 years, starting 5 years after partial cutting, from plots with mesic soil conditions and residual basal areas ranging from 23 to 69 m2/ha for western hemlock and 0 to 26 m2/ha for western redcedar. Partial cutting had no apparent effect on mushroom phenology over the 3 years. Significant block interactions demonstrated that reductions in basal area of western hemlock could lead to positive, neutral, and negative responses in mushroom richness, biomass, and number of fruiting bodies. These responses were related to stand structure and the potential differences in tree vigour after partial cutting. In addition, there was weak evidence that western redcedar, a host for vesicular-arbuscular mycorrhiza, had a negative effect on average taxon richness. The study demonstrated that partial-cutting systems could allow some timber removal without necessarily reducing ectomycorrhizal mushroom communities.


2007 ◽  
Vol 45 (6) ◽  
pp. 1726-1740 ◽  
Author(s):  
Sassan Saatchi ◽  
Kerry Halligan ◽  
Don G. Despain ◽  
Robert L. Crabtree

2014 ◽  
Vol 513-517 ◽  
pp. 4084-4089 ◽  
Author(s):  
Dao Wen Xie ◽  
Shi Liang Shi

Forest fire spreading is a complex burning phenomenon, and it is difficult to build a general spreading model for the fires occurred in different area over the world, even in the same country. Accordingly, predicting the burned area of forest fires is also a challenging task. In this work, five attributes (i.e. forest fuel moisture content, forest fuel inflammability, forest fuel load ,slope and burning time) are selected as input to predict burned area of forest fires occurred in the area of Guangzhou City in China. Next, using Data Mining (DM) technique, an SVM (Support Vector Machine) model was built and applied to deal with this type of a regression task, predicting burned area. Results showed that the selection of input attributes was reasonable, and the proposed SVM model was suitable for prediction of burned area, with higher precision, better generalization. This work provided a new way to deal with predictions for burned area of forest fires.


1995 ◽  
Vol 5 (1) ◽  
pp. 53-57
Author(s):  
Louise M. Egerton-Warburton ◽  
Brendon J. Griffin ◽  
John Kuo

AbstractAmounts of mineral nutrients and aluminium (Al) were assessed in the globoid inclusions, proteinaceous matrix and druse crystals ofEucalyptus calophyllaseeds collected from trees grown in coal-mine (mean soil pH 4.3, Al 260 μg g−1) and forest soils (pH 5.3, Al 10 μg g−1). Energy-dispersive X-ray microanalysis (EDX) of bulk frozen hydrated samples indicated that significantly higher amounts of Mg, P, S, K and Ca occurred in the globoid inclusions of mine- than forest-site seeds. In both seedstocks, Al was detected in the globoid inclusions but not in the proteinaceous matrix or druse crystals. Significantly higher amounts of Al occurred in mine-site samples of dry and germinating seeds than in forest-site seeds. It was concluded that globoid inclusions may be useful as indicators of the soil conditions in which the parent plant was grown.


Sign in / Sign up

Export Citation Format

Share Document