scholarly journals Biochemical soil activity in Taxus baccata L. stands in forest reserves and managed forests

2015 ◽  
Vol 75 (4) ◽  
pp. 407-415 ◽  
Author(s):  
Grażyna Olszowska

Abstract The aim of these studies was to estimate the enzymatic activity and chemical properties of soils of Taxus baccata L. stands in selected forest reserves as well as in managed forest stands that do not belong to reserves. Furthermore, I compared the soil fertility of both types of forest stand using a biochemical soil quality indicator. The studies were conducted in the following reserves: ‘Bogdanieckie Cisy’, ‘Cisy Rokickie’, ‘Cisy Tychowskie’, ‘Cisy w Czarnem’, as well as in managed forest stands with the same soil and habitat type as the above-mentioned reserves. Analyses showed a lower activity of urease, asparaginase, acid phosphatase and dehydrogenase in soils of the managed forests than in soils of the reserves. The soil nutrient availability given by the total organic carbon, nitrogen, and alkaline cation content as well as soil sorption capacity were significantly lower outside the forest reserves. Chemical and biochemical parameters were used to calculate a biochemical index of soil fertility. The index was higher for soil in forest reserves than for soil in managed forest stands located outside reserves. The result held true regardless of the biochemical parameters used in calculation. As has been shown in previous studies on protected areas with no cultivation that are largely influenced by natural processes, biochemical indices can be very useful for comparative analyses aiming at estimating soil quality or the reaction of soil to external factors, both natural and anthropogenic

Author(s):  
H. Haruna

Land use changes from forest into cultivated ecosystems result in negative impact on soil structure and quality. The purpose of this study was to determine effect of land use on soil quality in Afaka forest northern guinea savannah of Nigeria. Land use systems, including natural forest and cultivated land were identified. Eighteen (18) composite disturbed and undisturbed samples were collected from depth of 0-5 and 5-10 cm for analysis of pertinent soil properties in the laboratory using grid procedure. Most physical and chemical properties show relative variations in response to land use types and geomorphic positions. Results  indicate  that the soils had  high degree of weathering potentials, low  to moderate  bulk density at 0-5cm depth values between 1.42 to 1.49 Mg m-3 in  forest and  cultivated land, bulk density of  1.34 and 1.46 1.Mg m-3at 5 -1ocm depth   for forest and  cultivated land respectively. The soil water at 0-5cm depth is from 4.20 to 2.63 cm3/cm3, while at 5-10 cm depth these values vary from 4.32 to 2.13 cm3/cm3 under forest and cultivation land use. The pH (H2O) is 6.9 to 7.16 with low electrical conductivity of 0.13 dS/m(forest) and 0.12 dS/m (cultivation). The CEC of soils is recorded as 8.60 cmol kg-1 (forest) to 8.54 cmol kg-1 (cultivated)whereas  total nitrogen content of 1.21 g kg-1 and 1.11 g kg-1 and available phosphorus of 8.78 mg kg-1 (cultivated) and 5.47 mg kg-1 (forest).. Results indicate that soil fertility parameters were moderate to low for cultivated land and at all slope positions, suggesting that soil fertility management is required in order to make agriculture sustainable on Afaka area.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 353
Author(s):  
Marta Brygida Kujawska ◽  
Maria Rudawska ◽  
Robin Wilgan ◽  
Tomasz Leski

Unlike the numerous works concerning the effect of management on the forest mycobiome, only a few studies have addressed how fungi from different trophic groups recover from natural and anthropogenic disturbances and develop structural features typical of unmanaged old-growth forests. Our objective is to compare the soil fungal assemblages represented by different functional/trophic groups in protected and managed stands located in European mixed forests dominated by Scots pine. Fungal communities were analyzed using high-throughput Illumina MiSeq sequencing of fungal internal transcribed spacer 1 (ITS1) amplicons. Formerly managed forest reserves (established around 50 years ago) and forests under standard forest management appeared to be similar in terms of total and mean species richness of all fungal operational taxonomic units (OTUs), as well as OTUs assigned to different functional trophic groups. Among the 599 recorded OTUs, 497 (83%) were shared between both management types, whereas 9.5% of taxa were unique to forest reserves and 7.5% were unique to managed stands. Ascomycota and Basidiomycota were the predominant phyla, comprising 88% of all identified fungi. The main functional components of soil fungal assemblages consisted of saprotrophic (42% fungal OTUs; 27% reads) and ectomycorrhizal fungi (16%; 47%). Two-way analysis of similarities (ANOSIM) revealed that both site and management strategy influenced the species composition of soil fungal communities, with site being a primary effect for saprotrophic and ectomycorrhizal fungi. Volume of coarse and very fine woody debris and soil pH significantly influenced the ectomycorrhizal fungal community, whereas saprotrophic fungi were influenced primarily by volume of coarse woody debris and soil nitrate concentration. Among the identified fungal OTUs, 18 red-listed fungal species were identified from both forest reserves and managed forests, comprising two ECM fungi and four saprotrophs from the category of endangered species. Our results suggest that the transformation of fungal diversity after cessation of forest management is rather slow, and that both forest reserves and managed forests help uphold fungal diversity.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


Fact Sheet ◽  
2003 ◽  
pp. 1-4
Author(s):  
John Tappeiner ◽  
Nathan Poage ◽  
Janet L. Erickson

2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2008 ◽  
Vol 54 (No. 4) ◽  
pp. 189-193
Author(s):  
M. Żmihorski

Clearcuts are one of the results of forest management. The aim of this study was to assess the effect of clearcuts on bird communities in a managed forest in Western Poland. I applied the method of point transect counts. 20 points were located near clearcuts (less than 100 m from the nearest clearcut) and 25 points in the forest interior. In total, 36 bird species were recorded. On average, I found 9.20 bird species at points located near clearcuts and 6.72 species at points situated in the forest interior, and the difference was significant. The cumulative number of bird species for a given number of sampling points in the vicinity of clearcuts was higher than in the forest interior. The obtained results indicate that in managed, even-aged forests the generation of clearcuts can lead to an increase in local bird species richness.


2012 ◽  
Vol 12 ◽  
pp. 127-132
Author(s):  
Bhanu B Panthi

This research attempts to identify the existing condition of the community managed forest based on the assumption that it will serve as a proxy for the condition of other forests in the mid hills region of Nepal. The research area has an atypical variation in altitude and diverse pattern of vegetation. This study mainly focuses on estimating carbon content in the forest and identifying the species that has more carbon storage capacity. The research signifies the role of forests in mitigation of ‘Global warming’ and ‘Climate change’ by storing carbon in tree biomass. These types of community based forest management programs are significant for their additional carbon sequestration through the avoidance of deforestation and degradation. The carbon sequestration have a significant contribution to environmental benefits, any shrinkage of forests have an enormous impact on CO2 emission with long term consequences. Thus, the development and expansion of community managed forests provide many benefits to the adjacent community and globally at large.DOI: http://dx.doi.org/10.3126/njst.v12i0.6490 Nepal Journal of Science and Technology 12 (2011) 127-32 


2019 ◽  
Vol 238 ◽  
pp. 108206
Author(s):  
Tomasz Leski ◽  
Maria Rudawska ◽  
Marta Kujawska ◽  
Małgorzata Stasińska ◽  
Daniel Janowski ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 148
Author(s):  
S. Muwanga ◽  
R. Onwonga ◽  
S. O. Keya ◽  
E. Komutunga

Uganda Government embarked on promoting sedentary agriculture in Karamoja agro-pastoral semi-arid livelihood zone, which experience rapid environmental and high soil quality (SQ) decline. However, studies on sedentary agriculture&rsquo;s impact on soil quality using farmer&rsquo;s knowledge is limited. Consequently, a survey was carried out in Karamoja (Iriiri, Matany Sub-counties of Napak of districts and Rengen sub-county of Kotido) to determine the soil quality indicator parameters based on the farmers knowledge in order to build a local soil knowledge data base to better inform sustainable land use strategies. Using a semi-structured questionnaire, forty indigenous farmers per sub-county, were interviewed between August and September, 2015. The study took into account the social demographic characteristics of the people, farming enterprises, methods of crops production, crops yields trends, causes of the perceived yields trends and soil quality indicators. Prospects of developing Karamoja indigenous knowledge data base lies in visible feature that predict soil quality. Farmers used 36 parameters to determine SQ. The parameters were clustered into five categories; soil, crop, biological, environmental and management each category contributing to 42, 19,14,8 and 17% of the total indicators, respectively. The relationship between age group and the perceived indicators of soil fertility was statistically significant (p-value = 0.045) with the majority stating that they use either soil colour, soil depth or soil texture to express the fertility of soil. The farmer&rsquo;s soil quality indicators assessed in this study, is important in establishing indigenous-scientific hybrid knowledge data base to enhance soil fertility maintenance and better inform policy makers and other stakeholders on development of sustainable land use strategies.


Sign in / Sign up

Export Citation Format

Share Document