scholarly journals Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake

2014 ◽  
Vol 41 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Giorgos P. Paradisis ◽  
Elias Zacharogiannis ◽  
Dafni Mandila ◽  
Athanasia Smirtiotou ◽  
Polyxeni Argeitaki ◽  
...  

AbstractThe multi-stage 20-m shuttle run fitness test (20mMSFT) is a popular field test which is widely used to measure aerobic fitness by predicting maximum oxygen uptake (VO2 max) and performance. However, the velocity at which VO 2 max occurs (vVO 2 max) is a better indicator of performance than VO 2 max, and can be used to explain inter-individual differences in performance that VO 2 max cannot. It has been reported as a better predictor for running performance and it can be used to monitor athletes’ training for predicting optimal training intensity. This study investigated the validity and suitability of predicting VO2max and vVO2max of adult subjects on the basis of the performance of the 20mMST. Forty eight (25 male and 23 female) physical education students performed, in random order, a laboratory based continuous horizontal treadmill test to determine VO2max, vVO 2 max and a 20mMST, with an interval of 3 days between each test. The results revealed significant correlations between the number of shuttles in the 20mMSFT and directly determined VO 2 max (r = 0.87, p<0.05) and vVO 2 max (r = 0.93, p<0.05). The equation for prediction of VO 2 max was y = 0.0276x + 27.504, whereas for vVO 2 max it was y = 0.0937x + 6.890. It can be concluded that the 20mMSFT can accurately predict VO 2 max and vVO 2 max and this field test can provide useful information regarding aerobic fitness of adults. The predicted vVO 2 max can be used in monitoring athletes, especially in determining optimal training intensity.

1965 ◽  
Vol 20 (3) ◽  
pp. 509-513 ◽  
Author(s):  
R. G. Glassford ◽  
G. H. Y. Baycroft ◽  
A. W. Sedgwick ◽  
R. B. J. Macnab

Twenty-four male subjects aged 17–33 were given three direct tests of maximal oxygen uptake and one indirect test. The direct tests were those of Mitchell, Sproule, and Chapman (treadmill); Taylor, Buskirk, and Henschel (treadmill); and Åstrand (bicycle ergometer). The indirect test was the Åstrand-Ryhming nomogram (bicycle ergometer) employing heart rate response to submaximal work. In addition, the Johnson, Brouha, and Darling physical fitness test was administered. The two treadmill tests and the indirect test yielded significantly higher mean values than did the direct bicycle test. However no other significant differences in mean values occurred. Correlation coefficients between the various oxygen uptake tests as well as the fitness test were all found to be significant (.62–.83), i.e., greater than zero. No correlation obtained proved to be significantly greater than any other. The results indicate that direct treadmill tests, employing greater muscle mass, yield higher maximal oxygen uptake values (8%) than does the direct bicycle ergometer test. The Åstrand-Ryhming nomogram appears to produce a good estimation of maximal oxygen uptake, in a population unaccustomed to cycling. erobic capacity; exercise; heart rate Submitted on September 17, 1964


2012 ◽  
Vol 37 (4) ◽  
pp. 736-743 ◽  
Author(s):  
Camila Coelho Greco ◽  
Renato Aparecido Corrêa Caritá ◽  
Jeanne Dekerle ◽  
Benedito Sérgio Denadai

This study aimed at assessing the sensitivity of both maximal lactate steady state (MLSS) and critical power (CP) in populations of different aerobic training status to ascertain whether CP is as sensitive as MLSS to a change in aerobic fitness. Seven untrained subjects (UT) (maximal oxygen uptake = 37.4 ± 6.5 mL·kg–1·min–1) and 7 endurance cyclists (T) (maximal oxygen uptake = 62.4 ± 5.2 mL·kg–1·min–1) performed an incremental test for maximal oxygen uptake estimation and several constant work rate tests for MLSS and CP determination. MLSS, whether expressed in mL·kg–1·min–1 (T: 51.8 ± 5.7 vs. UT: 29.0 ± 6.1) or % maximal oxygen uptake (T: 83.1 ± 6.8 vs. UT: 77.1 ± 4.5), was significantly higher in the T group. CP expressed in mL·kg–1·min–1 (T: 56.8 ± 5.1 vs. UT: 33.1 ± 6.3) was significantly higher in the T group as well but no difference was found when expressed in % maximal oxygen uptake (T: 91.1 ± 4.8 vs. UT: 88.3 ± 3.6). Whether expressed in absolute or relative values, MLSS is sensitive to aerobic training status and a good measure of aerobic endurance. Conversely, the improvement in CP with years of training is proportional to those of maximal oxygen uptake. Thus, CP might be less sensitive than MLSS for depicting an enhancement in aerobic fitness.


Sports ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 217 ◽  
Author(s):  
Arne Sørensen ◽  
Tore Kristian Aune ◽  
Vegar Rangul ◽  
Terje Dalen

Cycling is a popular sport, and evaluation of the validity of tests to predict performance in competitions is important for athletes and coaches. Similarity between performance in sprints in mass-start bike races and in the laboratory is found, but, to our knowledge, no studies have investigated the relationship between laboratory measurements of maximal oxygen uptake (VO2max) and functional threshold power (FTP) with performance in official mass-start competitions. The purpose of this study was to evaluate the validity of a 20 min FTP test and VO2max as predictors for performance in an official mountain bike competition. Eleven moderately trained male cyclists at a local level participated in this study (age: 43 ± 5.1 years; height: 183.4 ± 5.4 m; weight: 84.4 ± 8.7 kg; body mass index: 25.1 ± 2.1). All subjects performed a 20 min FTP test in the laboratory to measure the mean power. In addition, the subjects completed an incremental test to exhaustion to determine VO2max. These two laboratory tests were analyzed together with the results from a 47 km mass-start mountain bike race, with a total elevation of 851 m. A significant relationship was found between the mean relative power (W/kg) for the 20 min FTP test and performance time in the race (r = −0.74, P < 0.01). No significant correlation was found between VO2max and cycling performance for these subjects (r = −0.37). These findings indicate that a 20 min FTP test is a more valid test for prediction of performance in mass-start bike races than a VO2max test for moderately trained cyclists.


2009 ◽  
Vol 4 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Michael Wilkinson ◽  
Damon Leedale-Brown ◽  
Edward M. Winter

Purpose:We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.Methods:Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.Results:Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.Conclusions:The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.


1989 ◽  
Vol 67 (5) ◽  
pp. 2066-2071 ◽  
Author(s):  
M. G. Flynn ◽  
T. J. Michaud ◽  
J. Rodriguez-Zayas ◽  
C. P. Lambert ◽  
J. B. Boone ◽  
...  

Seven well-trained male cyclists were studied during 105 min of cycling (65% of maximal oxygen uptake) and a 15-min “performance ride” to compare the effects of 4- and 8-h preexercise carbohydrate (CHO) feedings on substrate use and performance. A high CHO meal was given 1) 4-h preexercise (M-4), 2) 8-h preexercise (M-8), 3) 4-h preexercise with CHO feedings during exercise (M-4CHO), and 4) 8-h preexercise with CHO feedings during exercise (M-8CHO). Blood samples were obtained at 0, 15, 60, 105, and 120 min and analyzed for lactate, glucose, insulin, and glycerol. Total work output during the performance ride was similar for the M-4 (217,893 +/- 13,348 N/m) and M-8 trials (216,542 +/- 13,905) and was somewhat higher for the M-4CHO (223,994 +/- 14,387) and M-8CHO (224,702 +/- 15,709) trials (P = 0.059, NS). Glucose was significantly elevated throughout exercise, and insulin levels were significantly elevated at 15 and 60 min during M-4CHO and M-8CHO compared with M-4 and M-8 trials. Glycerol levels were significantly lower during the CHO feeding trials compared with placebo and were not significantly different during exercise when the subject had fasted an additional 4 h. The results of this study suggest that when preexercise meals are ingested 4 or 8 h before submaximal cycling exercise, substrate use and performance are similar.


Sign in / Sign up

Export Citation Format

Share Document