scholarly journals Reproducibility of Physiological and Performance Measures from a Squash-Specific Fitness Test

2009 ◽  
Vol 4 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Michael Wilkinson ◽  
Damon Leedale-Brown ◽  
Edward M. Winter

Purpose:We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.Methods:Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.Results:Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.Conclusions:The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.

2018 ◽  
Vol 16 (1) ◽  
pp. 149
Author(s):  
Georgia Rozi ◽  
Vassilios Thanopoulos ◽  
Milivoj Dopsaj

The purpose of this study was to investigate the differences in maximum concentration of lactic acid in the blood, heart rate and performance time on the test of 4x50m freestyle swimming on a sample of two protocols: a) one breath every 3 strokes and b) 14-15m of every 50m were swum with underwater movement of the feet without breathing and a rest with one breath every 3 strokes (apnea). The sample consisted of 15 female swimmers of the competitive level aged: 15.0 ± 1.0 years. Their basic style was the freestyle. To determine the maximum blood lactate concentration, capillary blood samples were taken in the 3rd, 5th, 7th minute and analyzed by the automatic analyzer Scout Lactate Germany. We also measured the heart rate immediately after each swimming protocol. The ANOVA showed that there were no statistically significant differences between the two protocols. Maximum lactate concentration in the protocol with apnea was 10.02 ± 3.05mmol / L and without apnea 8.9 ± 3.5mmol / L. Heart rate was 186 ± 6 and 186 ± 7 b/min respectively, and performance time 140.04 ± 8.13 and 138.73 ± 8.01sec in swimmers aged 14-16. Swimming apnea needs to be studied in a larger age sample with more variables to ascertain the effects on sprint swimming.


2012 ◽  
Vol 7 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Hervé Assadi ◽  
Romuald Lepers

Purposes:To compare the physiological responses and maximal aerobic running velocity (MAV) during an incremental intermittent (45-s run/15-s rest) field test (45-15FIT) vs an incremental continuous treadmill test (TR) and to demonstrate that the MAV obtained during 45-15FIT (MAV45-15) was relevant to elicit a high percentage of maximal oxygen uptake (VO2max) during a 30-s/30-s intermittent training session.Methods:Oxygen uptake (VO2), heart rate (HR), and lactate concentration ([La]) were measured in 20 subjects during 2 maximal incremental tests and four 15-min intermittent tests. The time spent above 90% and 95% VO2max (t90% and t95% VO2max, respectively) was determined.Results:Maximal physiological parameters were similar during the 45-15FIT and TR tests (VO2max 58.6 ± 5.9 mL · kg−1 · min−1 for TR vs 58.5 ± 7.0 mL · kg−1 · min−1 for 45-15FIT; HRmax 200 ± 8 beats/min for TR vs 201 ± 7 beats/min for 45-15FIT). MAV45-15 was significantly (P < .001) greater than MAVTR (17.7 ± 1.1 vs 15.6 ± 1.4 km/h). t90% and t95% VO2max during the 30-s/30-s performed at MAVTR were significantly (P < .01) lower than during the 30-s/30-s performed at MAV45-15. Similar VO2 during intermittent tests performed at MAV45-15 and at MAVTR can be obtained by reducing the recovery time or using active recovery.Conclusions:The results suggested that the 45-15FIT is an accurate field test to determine VO2max and that MAV45-15 can be used during high-intensity intermittent training such as 30-s runs interspersed with 30-s rests (30-s/30-s) to elicit a high percentage of VO2max.


2009 ◽  
Vol 4 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Michael Wilkinson ◽  
Damon Leedale-Brown ◽  
Edward M. Winter

Purpose:This study examined the validity of a squash-specific test designed to assess endurance capability and aerobic power.Methods:Eight squash players and eight runners performed, in a counterbalanced order, incremental treadmill (TT) and squash-specific (ST) tests to volitional exhaustion. Breath-by-breath oxygen uptake was determined by a portable analyzer and heart rate was assessed telemetrically. Time to exhaustion was recorded.Results:Independent t tests revealed longer time to exhaustion for squash players on the ST than runners (775 ± 103 vs. 607 ± 81 s; P = .003) but no difference between squash players and runners in maximal oxygen uptake ( Vo2max) or maximum heart rate (HRmax). Runners exercised longer on the TT (521 ± 135 vs. 343 ± 115 s; P = .01) and achieved higher Vo2max than squash players (58.6 ± 7.5 vs. 49.6 ± 7.3 mL·kg−1·min−1; P = .03), with no group difference in HRmax. Paired t tests showed squash players achieved higher Vo2max on the ST than the TT (52.2 ± 7.1 vs. 49.6 ± 7.3 mL·kg−1·min−1; P = .02). The Vo2max and HRmax of runners did not differ between tests, nor did the HRmax of squash players. ST and TT Vo2max correlated highly in squash players and runners (r = .94, P < .001; r = .88, P = .003).Conclusions:The ST discriminated endurance performance between squash players and runners and elicited higher Vo2max in squash players than a nonspecifc test. The results suggest that the ST is a valid assessment of Vo2max and endurance capability in squash players.


Author(s):  
Inese Pontaga ◽  
Janis Zidens

The aim of our investigation was to compare qualified basketball and handball players’ anthropometric and performance (aerobic and anaerobic endurance, explosive power) characteristics. Male handball and basketball players from Premium league teams voluntary participated. The aerobic endurance was measured on a treadmill, the intensity of running increased step by step, the test was performed to exhaustion. The oxygen uptake, heart rate and running speed were measured.  The lactate concentration was detected in periphery blood samples by special strips in the end of every load step and after the test.  Maximal vertical jump heights of the counter-movement jump with hands on the hips and the free jump with motions of arms were measured on a special device.  The height of basketball players is higher in comparison with handball players (p=0.002), but the body weight and body mass index did not differed significantly (p>0.05). The aerobic endurance characteristics (heart rate and oxygen uptake at the anaerobic threshold load intensity, and maximal oxygen uptake) were greater in basketball than in handball players (p<0.04). The maximal lactate concentration in blood plasma two minutes after the test was higher in handball players than in basketball players (p=0.043). The vertical jump heights are the same in basketball and handball players (p>0.05).


1965 ◽  
Vol 20 (3) ◽  
pp. 509-513 ◽  
Author(s):  
R. G. Glassford ◽  
G. H. Y. Baycroft ◽  
A. W. Sedgwick ◽  
R. B. J. Macnab

Twenty-four male subjects aged 17–33 were given three direct tests of maximal oxygen uptake and one indirect test. The direct tests were those of Mitchell, Sproule, and Chapman (treadmill); Taylor, Buskirk, and Henschel (treadmill); and Åstrand (bicycle ergometer). The indirect test was the Åstrand-Ryhming nomogram (bicycle ergometer) employing heart rate response to submaximal work. In addition, the Johnson, Brouha, and Darling physical fitness test was administered. The two treadmill tests and the indirect test yielded significantly higher mean values than did the direct bicycle test. However no other significant differences in mean values occurred. Correlation coefficients between the various oxygen uptake tests as well as the fitness test were all found to be significant (.62–.83), i.e., greater than zero. No correlation obtained proved to be significantly greater than any other. The results indicate that direct treadmill tests, employing greater muscle mass, yield higher maximal oxygen uptake values (8%) than does the direct bicycle ergometer test. The Åstrand-Ryhming nomogram appears to produce a good estimation of maximal oxygen uptake, in a population unaccustomed to cycling. erobic capacity; exercise; heart rate Submitted on September 17, 1964


2006 ◽  
Vol 31 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Adrian W. Midgley ◽  
Lars R. McNaughton ◽  
Sean Carroll

This study investigated the utility of a verification phase for increasing confidence that a “true” maximal oxygen uptake had been elicited in 16 male distance runners (mean age (±SD), 38.7  (± 7.5 y)) during an incremental treadmill running test continued to volitional exhaustion. After the incremental test subjects performed a 10 min recovery walk and a verification phase performed to volitional exhaustion at a running speed 0.5 km·h–1 higher than that attained during the last completed stage of the incremental phase. Verification criteria were a verification phase peak oxygen uptake ≤ 2% higher than the incremental phase value and peak heart rate values within 2 beats·min–1 of each other. Of the 32 tests, 26 satisfied the oxygen uptake verification criterion and 23 satisfied the heart rate verification criterion. Peak heart rate was lower (p = 0.001) during the verification phase than during the incremental phase, suggesting that the verification protocol was inadequate in eliciting maximal values in some runners. This was further supported by the fact that 7 tests exhibited peak oxygen uptake values over 100 mL·min–1 (≥ 3%) lower than the peak values attained in the incremental phase. Further research is required to improve the verification procedure before its utility can be confirmed.


Author(s):  
Nicola Giovanelli ◽  
Lara Mari ◽  
Asia Patini ◽  
Stefano Lazzer

Purpose: To compare energetics and spatiotemporal parameters of steep uphill pole walking on a treadmill and overground. Methods: First, the authors evaluated 6 male trail runners during an incremental graded test on a treadmill. Then, they performed a maximal overground test with poles and an overground test at 80% (OG80) of vertical velocity of maximal overground test with poles on an uphill mountain path (length = 1.3 km, elevation gain = 433 m). Finally, they covered the same elevation gain using poles on a customized treadmill at the average vertical velocity of the OG80. During all the tests, the authors measured oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, and rate of perceived exertion. Results: Treadmills required lower metabolic power (15.3 [1.9] vs 16.6 [2.0] W/kg, P = .002) and vertical cost of transport (49.6 [2.7] vs 53.7 [2.1] J/kg·m, P < .001) compared with OG80. Also, oxygen uptake was lower on a treadmill (41.7 [5.0] vs 46.2 [5.0] mL/kg·min, P = .001). Conversely, respiratory quotient was higher on TR80 compared with OG80 (0.98 [0.02] vs 0.89 [0.04], P = .032). In addition, rate of perceived exertion was higher on a treadmill and increased with elevation (P < .001). The authors did not detect any differences in other physiological measurements or in spatiotemporal parameters. Conclusions: Researchers, coaches, and athletes should be aware that steep treadmill pole walking requires lower energy consumption but same heart rate and rate of perceived exertion than overground pole walking at the same average intensity.


2017 ◽  
Vol 21 (1) ◽  
pp. 31-41
Author(s):  
Michael J. Mazzoleni ◽  
Claudio L. Battaglini ◽  
Kerry J. Martin ◽  
Erin M. Coffman ◽  
Jordan A. Ekaidat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document