scholarly journals Focused Review on Neural Correlates of Different Types of Motor Errors and Related Terminological Issues

2021 ◽  
Vol 76 (1) ◽  
pp. 67-81
Author(s):  
Lisa Katharina Maurer ◽  
Michael Joch ◽  
Mathias Hegele ◽  
Hermann Müller

Abstract The Error-related negativity (Ne/ERN) and the feedback-related negativity (FRN), two event-related potentials in electroencephalogram tracings, have been used to examine error processing in conscious actions. In the classical terminology the Ne/ERN and the FRN are differentiated with respect to whether internal (Ne/ERN) or external (FRN) error information is processed. In motor tasks, however, errors of different types can be made: A wrong action can be selected that is not adequate to achieve the task goal (or action effect), or the correctly selected action can be mis-performed such that the task goal might be missed (movement error). Depending on the motor task and the temporal sequences of these events, internal and external error information can coincide. Hence, a clear distinction of the information source is difficult, and the classical terminology that differentiates the Ne/ERN and the FRN with respect to internal and external error information becomes ambiguous. But, a stronger focus on the characteristics of the definition of “task” and the cause of “errors”, as well as on temporal characteristics of event-related potentials with respect to the task action allows separate examination of the processing of movement errors, the processing of the prediction of action effect errors, or the processing of the detection of action effect errors. The present article gives an overview of example studies investigating the Ne/ERN and the FRN in motor tasks, classifies them with respect to action effect errors or movement errors, and proposes updated terminology.

2005 ◽  
Vol 19 (3) ◽  
pp. 216-231 ◽  
Author(s):  
Albertus A. Wijers ◽  
Maarten A.S. Boksem

Abstract. We recorded event-related potentials in an illusory conjunction task, in which subjects were cued on each trial to search for a particular colored letter in a subsequently presented test array, consisting of three different letters in three different colors. In a proportion of trials the target letter was present and in other trials none of the relevant features were present. In still other trials one of the features (color or letter identity) were present or both features were present but not combined in the same display element. When relevant features were present this resulted in an early posterior selection negativity (SN) and a frontal selection positivity (FSP). When a target was presented, this resulted in a FSP that was enhanced after 250 ms as compared to when both relevant features were present but not combined in the same display element. This suggests that this effect reflects an extra process of attending to both features bound to the same object. There were no differences between the ERPs in feature error and conjunction error trials, contrary to the idea that these two types of errors are due to different (perceptual and attentional) mechanisms. The P300 in conjunction error trials was much reduced relative to the P300 in correct target detection trials. A similar, error-related negativity-like component was visible in the response-locked averages in correct target detection trials, in feature error trials, and in conjunction error trials. Dipole modeling of this component resulted in a source in a deep medial-frontal location. These results suggested that this type of task induces a high level of response conflict, in which decision-related processes may play a major role.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Betina Korka ◽  
Erich Schröger ◽  
Andreas Widmann

AbstractOur brains continuously build and update predictive models of the world, sources of prediction being drawn for example from sensory regularities and/or our own actions. Yet, recent results in the auditory system indicate that stochastic regularities may not be easily encoded when a rare medium pitch deviant is presented between frequent high and low pitch standard sounds in random order, as reflected in the lack of sensory prediction error event-related potentials [i.e., mismatch negativity (MMN)]. We wanted to test the implication of the predictive coding theory that predictions based on higher-order generative models—here, based on action intention, are fed top-down in the hierarchy to sensory levels. Participants produced random sequences of high and low pitch sounds by button presses in two conditions: In a “specific” condition, one button produced high and the other low pitch sounds; in an “unspecific” condition, both buttons randomly produced high or low-pitch sounds. Rare medium pitch deviants elicited larger MMN and N2 responses in the “specific” compared to the “unspecific” condition, despite equal sound probabilities. These results thus demonstrate that action-effect predictions can boost stochastic regularity-based predictions and engage higher-order deviance detection processes, extending previous notions on the role of action predictions at sensory levels.


2009 ◽  
Vol 21 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Redmond G. O'Connell ◽  
Paul M. Dockree ◽  
Mark A. Bellgrove ◽  
Alessandra Turin ◽  
Seamus Ward ◽  
...  

Disentangling the component processes that contribute to human executive control is a key challenge for cognitive neuroscience. Here, we employ event-related potentials to provide electrophysiological evidence that action errors during a go/no-go task can result either from sustained attention failures or from failures of response inhibition, and that these two processes are temporally and physiologically dissociable, although the behavioral error—a nonintended response—is the same. Thirteen right-handed participants performed a version of a go/no-go task in which stimuli were presented in a fixed and predictable order, thus encouraging attentional drift, and a second version in which an identical set of stimuli was presented in a random order, thus placing greater emphasis on response inhibition. Electrocortical markers associated with goal maintenance (late positivity, alpha synchronization) distinguished correct and incorrect performance in the fixed condition, whereas errors in the random condition were linked to a diminished N2–P3 inhibitory complex. In addition, the amplitude of the error-related negativity did not differ between correct and incorrect responses in the fixed condition, consistent with the view that errors in this condition do not arise from a failure to resolve response competition. Our data provide an electrophysiological dissociation of sustained attention and response inhibition.


2020 ◽  
Author(s):  
Emily S. Kappenman ◽  
Jaclyn Farrens ◽  
Wendy Zhang ◽  
Andrew X Stewart ◽  
Steven J Luck

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a range of sensory, cognitive, affective, and motor processes. Despite their broad application across basic and clinical research, there is little standardization of ERP paradigms and analysis protocols across studies. To address this, we created ERP CORE (Compendium of Open Resources and Experiments), a set of optimized paradigms, experiment control scripts, data processing pipelines, and sample data (N = 40 neurotypical young adults) for seven widely used ERP components: N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and error-related negativity (ERN). This resource makes it possible for researchers to 1) employ standardized ERP paradigms in their research, 2) apply carefully designed analysis pipelines and use a priori selected parameters for data processing, 3) rigorously assess the quality of their data, and 4) test new analytic techniques with standardized data from a wide range of paradigms.


2020 ◽  
pp. 1-09
Author(s):  
Jan Rouke Kuipers ◽  
William A. Phillips

Pupillometry has been found to be correlated with activity of cholinergic and noradrenergic neuromodulator systems. These systems regulate the level of cortical arousal and therefore perception, attention, and memory. Here, we tested how different types of pupil size variance (prestimulus baseline and prestimulus hippus power) may correlate with behavioral and electrophysiological brain responses (ERPs). We recorded pupil size and ERPs while participants were presented with a series of words and then asked whether they had been in the initial list when they were later presented intermixed with unpresented words. We found that a smaller prestimulus baseline pupil size during the study phase was associated with better memory performance. Study items also evoked a larger P3 response at presentation and a greater old/new memory ERP effect at test when prestimulus pupil size was small rather than large. Prestimulus hippus power was found to be a between-subjects factor affecting the robustness of memory encoding with less power being associated with a greater old/new memory ERP effect. These results provide evidence relating memory and ERPs to variables defined on pupil size that are thought to reflect varying states of parasympathetic and sympathetic arousal.


1993 ◽  
Vol 5 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Michael E. Smith

Decisions regarding whether an item has been previously encountered are typically accompanied by one of two distinct forms of subjective awareness: either a general sense of familiarity, or conscious recollection of specific details from a prior study episode. To examine the neurophysiological concomitants of these different types of internal experience, event-related potentials (ERPs) were recorded while subjects engaged in a modified recognition memory procedure that required them to describe their subjective response during each testtrial. Stimuli that evoked recollection were accompanied by waveforms distinct from those that evoked only a sense of familiarity, and waveforms for both categories of correctly classified old items differed from correctly rejected distractor items and incorrectly classified (missed) studied items. These ERP responses are interpreted with respect to current knowledge concerning the neural structures and processes intimately involved in the capacity to engage in recollection.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S50-S50
Author(s):  
Jihye Park ◽  
Minah Kim ◽  
Wu Jeong Hwang ◽  
Jun Soo Kwon

Abstract Background Impaired error/conflict monitoring as reflected in the event-related potentials (ERPs) has consistently reported in patients with schizophrenia. However, whether this impairment exist from the early phase of psychosis such as first-episode psychosis (FEP) is not yet been clearly reported. To investigate the presence of error/conflict monitoring deficit in early psychosis, we examined the error-related negativity (ERN), error-related positivity (Pe), and correct-response negativity (CRN) during the Go/Nogo task in the patients with FEP. Methods 25 patients with and 25 age, sex matched healthy controls (HCs) were participated in electroencephalographic recording during the Go/Nogo task. Trials with error response was analyzed to define ERN at Fz electrode site and Pe at Pz electrode site. Trials with correct response was used for CRN analysis at Fz electrode site. Independent samples t-test was used to compare the amplitudes of ERP components between FEP and HC groups. Pearson’s correlation analysis was performed to reveal the relationship of altered ERP component with symptomatic severity in patients with schizophrenia. Results FEP patients showed significantly smaller ERN amplitude at Fz electrode site compared to HCs (t=-3.294, p=0.002). However, there was no difference of CRN (t=0.017, p=0.986) and Pe (t=1.806, p=0.077) amplitudes between FEP and HC groups. There was no significant correlation of symptomatic severity and ERN amplitude at Fz electrode site in FEP patients. Discussion These findings suggest that impairments in error/conflict monitoring as reflected by ERN amplitude exist from the early course of psychotic disorder. Future study with larger sample size and subjects at earlier phase such as clinical high risk for psychosis would be needed to confirm the findings of current study.


1993 ◽  
Vol 5 (3) ◽  
pp. 317-334 ◽  
Author(s):  
Debra L. Mills ◽  
Sharon A. Coffey-Corina ◽  
Helen J. Neville

The purpose of the present study was to examine patterns of neural activity relevant to language processing in 20-month-old infants, and to determine whether or not changes in cerebral organization occur as a function of specific changes in language development. Event-related potentials (ERPs) were recorded as children listened to a series of words whose meaning was understood by the child, words whose meaning the child did not understand, and backward words. The results showed that specific and different ERP components discriminated comprehended words from unknown and from backward words. Distinct lateral and anterior-posterior specializations were apparent in EW responsiveness to the different types of words. Moreover, the results suggested that increasing language abilities were associated with increasing cerebral specialization for language processing over the temporal and parietal regions of the left hemisphere.


2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.


2018 ◽  
Author(s):  
Xiaochen Zheng ◽  
Ardi Roelofs ◽  
Jason Farquhar ◽  
Kristin Lemhöfer

AbstractAlthough bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.


Sign in / Sign up

Export Citation Format

Share Document