scholarly journals Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

Author(s):  
Weihua Mo ◽  
Philip L.-F. Liu

AbstractIn this paper we validate a numerical model for-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes(N-S) equations for an incompressible fluid. The N-S equations are solved by two-step projection finite volume scheme and the free surface displacements are tracked by the slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

2017 ◽  
Vol 11 (01) ◽  
pp. 1740006 ◽  
Author(s):  
Changbo Jiang ◽  
Xiaojian Liu ◽  
Yu Yao ◽  
Bin Deng ◽  
Jie Chen

Seawall is a most commonly used structure in coastal areas to protect the landscape and coastal facilities. The studies of interactions between the tsunami-like solitary waves and the seawalls are relatively rare in the literature. In this study, a three-dimensional numerical model based on OpenFOAM® was developed to investigate the tsunami-like solitary waves propagating over a rectangular seawall. The Navier–Stokes equations for two-phase incompressible flow, combining with methods of [Formula: see text] for turbulence closure and Volume of Fluid (VOF) for tracking the free surface, were solved. Laboratory experiments were performed to measure some of the hydrodynamic feature associated with solitary waves. The model was then validated by the laboratory data, and good agreements were found for free surface, velocity and dynamic pressure around the seawall. Finally, a series of numerical experiments were conducted to analyze the evolution of both wave and flow fields, the overtopping discharge as well as wave pressure (force) around the seawall, special attention is given to the effects of seawall crest width. Our findings will help to improve the understanding in the occurrences of tsunami-induced damages in the vicinity of seawall such as wave impact and local scouring.


2020 ◽  
Vol 8 (6) ◽  
pp. 1941-1944

Numerical simulations have been carried out on a rectangular tank filled partially with liquid using volume of fluid technique. The tank has been given to and fro motion in one direction. Numerical simulation has been carried for a two dimensional case having laminar and unsteady flow. The changes in free surface displacement and dynamic pressure at different times has been observed using ANSYS software. The study was conducted for two sec. It was observed that free surface displacement of fluid increases with velocity. Also, with an increase in volume of liquid the sloshing effect decreases.


1972 ◽  
Vol 39 (1) ◽  
pp. 53-58 ◽  
Author(s):  
D. S. Weaver ◽  
T. E. Unny

This paper examines the influence of a parallel free surface on the hydroelastic stability of a flat panel. A quasi-two-dimensional approximation is made for the free surface displacement and the results compared with the more general but cumbersome three-dimensional solution. This comparison shows that the former approach is quite reasonable as well as being considerably simpler and more instructive. It is found that the free surface has no effect for depth ratios greater than about one half and is stabilizing for smaller depth ratios.


1981 ◽  
Vol 103 (1) ◽  
pp. 10-15 ◽  
Author(s):  
T. F. Li ◽  
C. C. Lin ◽  
C. H. Luk

Liquid sloshing in pool due to three-directional earthquake ground motion is analyzed. The liquid pool is represented by a rigid annular circular cylindrical tank. Analytical and numerical solutions are presented and their limitations are discussed. For a given seismic ground excitation time-history, the free surface and the pressure and velocity fields in the pool are calculated by superposition of modal responses. The results show that container vertical acceleration is of secondary importance in determining the free surface displacement, but has a major effect on the pressure load on the container boundary.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2003 ◽  
Vol 41 (1) ◽  
pp. 110-112
Author(s):  
ZhixiaN. Cao ◽  
Rodney Day ◽  
Sarah Liriano

1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


1981 ◽  
Vol 104 ◽  
pp. 407-418 ◽  
Author(s):  
John W. Miles

Free and forced oscillations in a basin that is connected through a narrow canal to either the open sea or a second basin are considered on the assumption that the spatial variation of the free-surface displacement is negligible. The free-surface displacement in the canal is allowed to be finite, subject only to the restriction (in addition to that implicit in the approximation of spatial uniformity) that the canal does not run dry. The resulting model yields a Hamiltonian pair of phase-plane equations for the free oscillations, which are integrated in terms of elliptic functions on the additional assumption that the kinetic energy of the motion in the basin(s) is negligible compared with that in the canal or otherwise through an expansion in an amplitude parameter. The corresponding model for forced oscillations that are limited by radiation damping yields a generalization of Duffing's equation for an oscillator with a soft spring, the solution of which is obtained as an expansion in the amplitude of the fundamental term in a Fourier expansion. Equivalent circuits are developed for the various models.


2004 ◽  
Vol 126 (5) ◽  
pp. 818-826
Author(s):  
Brian J. Daniels ◽  
James A. Liburdy

The oscillatory free-surface displacement in an orifice periodically driven at the inlet is studied. The predictions based on a potential flow analysis are investigated in light of viscous and large curvature effects. Viscous effects near the wall are estimated, as are surface viscous energy loss rates. The curvature effect on the modal frequency is shown to become large at the higher modal surface shapes. Experimental results are obtained using water for two orifice diameters, 794 and 1180 μm. Results of surface shapes and modal frequencies are compared to the predictions. Although modal shapes seem to be well predicted by the theory, the experimental results show a significant shift of the associated modal frequencies. A higher-order approximation of the surface curvature is presented, which shows that the modal frequency should, in fact, be reduced from potential flow predictions as is consistent with the large curvature effect. To account for the effect of finite surface displacements an empirical correlation for the modal frequencies is presented.


Sign in / Sign up

Export Citation Format

Share Document