scholarly journals Score Level and Rank Level Fusion for Kinect-Based Multi-Modal Biometric System

2019 ◽  
Vol 9 (3) ◽  
pp. 167-176 ◽  
Author(s):  
Md Wasiur Rahman ◽  
Fatema Tuz Zohra ◽  
Marina L. Gavrilova

Abstract Computational intelligence firmly made its way into the areas of consumer applications, banking, education, social networks, and security. Among all the applications, biometric systems play a significant role in ensuring an uncompromised and secure access to resources and facilities. This article presents a first multimodal biometric system that combines KINECT gait modality with KINECT face modality utilizing the rank level and the score level fusion. For the KINECT gait modality, a new approach is proposed based on the skeletal information processing. The gait cycle is calculated using three consecutive local minima computed for the distance between left and right ankles. The feature distance vectors are calculated for each person’s gait cycle, which allows extracting the biometric features such as the mean and the variance of the feature distance vector. For Kinect face recognition, a novel method based on HOG features has been developed. Then, K-nearest neighbors feature matching algorithm is applied as feature classification for both gait and face biometrics. Two fusion algorithms are implemented. The combination of Borda count and logistic regression approaches are used in the rank level fusion. The weighted sum method is used for score level fusion. The recognition accuracy obtained for multi-modal biometric recognition system tested on KINECT Gait and KINECT Eurocom Face datasets is 93.33% for Borda count rank level fusion, 96.67% for logistic regression rank-level fusion and 96.6% for score level fusion.

Author(s):  
Surinder kaur ◽  
Gopal Chaudhary ◽  
Javalkar Dinesh kumar

Nowadays, Biometric systems are prevalent for personal recognition. But due to pandemic COVID 19, it is difficult to pursue a touch-based biometric system. To encourage a touchless biometric system, a less constrained multimodal personal identification system using palmprint and dorsal hand vein is presented. Hand based Touchless recognition system gives a higher user-friendly system and avoids the spread of coronavirus. A method using Convolution Neural Networks(CNN) to extract discriminative features from the data samples is proposed. A pre-trained function PCANeT is used in the experiments to show the performance of the system in fusion scheme. This method doesn’t require keeping the palm in a specific position or at a certain distance like most other papers. Different patches of ROI are used at two different layers of CNN. Fusion of palmprint and dorsal hand vein is done for final result matching. Both Feature level and score level fusion methods are compared. Results shows the accuracy of upto 98.55% and 98.86% and Equal error rate (EER) of upto 1.22% and 0.93% for score level fusion and feature level fusion, respectively. Our method gives higher accurate results in a less constrained environment.


Author(s):  
Milind E Rane ◽  
Umesh S Bhadade

The paper proposes a t-norm-based matching score fusion approach for a multimodal heterogenous biometric recognition system. Two trait-based multimodal recognition system is developed by using biometrics traits like palmprint and face. First, palmprint and face are pre-processed, extracted features and calculated matching score of each trait using correlation coefficient and combine matching scores using t-norm based score level fusion. Face database like Face 94, Face 95, Face 96, FERET, FRGC and palmprint database like IITD are operated for training and testing of algorithm. The results of experimentation show that the proposed algorithm provides the Genuine Acceptance Rate (GAR) of 99.7% at False Acceptance Rate (FAR) of 0.1% and GAR of 99.2% at FAR of 0.01% significantly improves the accuracy of a biometric recognition system. The proposed algorithm provides the 0.53% more accuracy at FAR of 0.1% and 2.77% more accuracy at FAR of 0.01%, when compared to existing works.


2021 ◽  
Author(s):  
SANTHAM BHARATHY ALAGARSAMY ◽  
Kalpana Murugan

Abstract More than one biometric methodology of an individual is utilized by a multimodal biometric system to moderate a portion of the impediments of a unimodal biometric system and upgrade its precision, security, and so forth. In this paper, an incorporated multimodal biometric system has proposed for the identification of people utilizing ear and face as input and pre-preparing, ring projection, data standardization, AARK limit division, extraction of DWT highlights and classifiers are utilized. Afterward, singular matches gathered from the different modalities produce the individual scores. The proposed framework indicated got brings about the investigations than singular ear and face biometrics tried. To certify the individual as genuine or an impostor, the eventual outcomes are then utilized. On the IIT Delhi ear information base and ORL face data set, the proposed framework has checked and indicated an individual exactness of 96.24%


Author(s):  
Norah Abdullah Al-johani ◽  
Lamiaa A. Elrefaei

Advancements in biometrics have attained relatively high recognition rates. However, the need for a biometric system that is reliable, robust, and convenient remains. Systems that use palmprints (PP) for verification have a number of benefits including stable line features, reduced distortion and simple self-positioning. Dorsal hand veins (DHVs) are distinctive for every person, such that even identical twins have different DHVs. DHVs appear to maintain stability over time. In the past, different features algorithms were used to implement palmprint (PP) and dorsal hand vein (DHV) systems. Previous systems relied on handcrafted algorithms. The advancements of deep learning (DL) in the features learned by the convolutional neural network (CNN) has led to its application in PP and DHV recognition systems. In this article, a multimodal biometric system based on PP and DHV using (VGG16, VGG19 and AlexNet) CNN models is proposed. The proposed system is uses two approaches: feature level fusion (FLF) and Score level fusion (SLF). In the first approach, the features from PP and DHV are extracted with CNN models. These extracted features are then fused using serial or parallel fusion and used to train error-correcting output codes (ECOC) with a support vector machine (SVM) for classification. In the second approach, the fusion at score level is done with sum, max, and product methods by applying two strategies: Transfer learning that uses CNN models for features extraction and classification for PP and DHV, then score level fusion. For the second strategy, features are extracted with CNN models for PP and DHV and used to train ECOC with SVM for classification, then score level fusion. The system was tested using two DHV databases and one PP database. The multimodal system is tested two times by repeating PP database for each DHV database. The system achieved very high accuracy rate.


Author(s):  
Mina Farmanbar ◽  
Önsen Toygar

This paper proposes hybrid approaches based on both feature level and score level fusion strategies to provide a robust recognition system against the distortions of individual modalities. In order to compare the proposed schemes, a virtual multimodal database is formed from FERET face and PolyU palmprint databases. The proposed hybrid systems concatenate features extracted by local and global feature extraction methods such as Local Binary Patterns, Log Gabor, Principal Component Analysis and Linear Discriminant Analysis. Match score level fusion is performed in order to show the effectiveness and accuracy of the proposed schemes. The experimental results based on these databases reported a significant improvement of the proposed schemes compared with unimodal systems and other multimodal face–palmprint fusion methods.


Author(s):  
Maria Afzal ◽  
Mohd Abdul Ahad ◽  
Jyotsana Grover

Biometricplay vigorous role in the authentication of user by using his/her physical body traits. Unimodal biometric system uses single body traits and multimodal systems use multiple body traits. Multimodal biometric system have overcome the disadvantages that has occurred in unimodal systems. In this paper we are fusing the different spectral bandsof palm print (Red, Green and Blue) using T-conorm operators like Hamacher, Frank, Probabilistic and Scheiwer & Sklar. Experiment Results suggest that Scheiwer & Sklar gives the best results. Experimental Results ascertain that the proposed approach for the score level fusion outperforms the state-of-art.


Author(s):  
Krishna Shinde ◽  
Sumegh Tharewal

The Biometrics system is getting popularity since last decade As per Information Technology industry demand. This techn-ology are satisfy authentication and authorization process  needs. But the  unimodal biometric system  have own limitations. the limitation of unimodal, we can choosing the  approach of multimodal biometric system. In this research paper choose the physiological model for face recognition and behavioural model for signature recognition. The recognition of face and signature used match score level fusion. In this fusion technology for secured authentication of person


Sign in / Sign up

Export Citation Format

Share Document