scholarly journals Calibration, Validation and Performance Evaluation of Swat Model for Sediment Yield Modelling in Megech Reservoir Catchment, Ethiopia

2019 ◽  
Vol 12 (3-4) ◽  
pp. 21-31
Author(s):  
Abebe Tarko Assfaw

Abstract Intensive agricultural practice in Ethiopian highlands results in increasing rates of soil erosion and reservoir sedimentation. The estimation of sediment yield and prediction of the spatial distribution of soil erosion on the upper Megech reservoir catchment enables the local governments and policymakers to maximize the design span life of the Megech reservoir through implementing appropriate soil conservation practices. For this study, the sediment yield was estimated and analyzed through hydrological modeling (SWAT). The simulated outputs of the model show that the mean annual surface runoff was 282 mm and the mean annual streamflow was 153 m3/s. Similarly, 12.33 t/ha mean annual total sediment load gets into the Megech reservoir. The model performance standard used to evaluate the model result indicates that the model was superior in performing the trend of runoff and sediment yield in both calibration and validation periods. Finally, the most erosion vulnerable sub-basins that could have a significant impact on the sediment yield of the reservoir were identified. Based on this, sub-basin 7, 25, 27, 18 and 29 were found to be the most erosion sensitive areas that could have a significant contribution to the increment of sediment yield in the Megech reservoir. Considering the land use, soil type, slope, and relief of erosion vulnerable sub-basins cut off drains, fallow land, contour ploughing, Fanya juu terraces, soil bunds combined with trenches and trees could be the possible management strategies to reduce the sediment yield in the catchment.

Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract In this study, the Soil and Water Assessment Tool (SWAT) model was used to examine the spatial variability of sediment yield, quantify runoff, and soil loss at the sub-basin level and prioritize sub-basins in the Sindh watershed due to its computational efficiency in complex watersheds. The Sequential Uncertainty Fitting-2 approach was used to determine the sensitivity and uncertainty of model parameters. The parameter sensitivity analysis showed that Soil Conservation Services Curve Number II is the most sensitive model parameter for streamflow simulation, whereas linear parameters for sediment re-entrainment is the most significant parameter for sediment yield simulation. This study used daily runoff and sediment event data from 2003 to 2013; data from 2003 to 2008 were utilized for calibration and data from 2009 to 2013 were used for validation. In general, the model performance statistics showed good agreement between observed and simulated values of streamflow and sediment yield for both calibration and validation periods. The noticed insights of this research show the ability of the SWAT model in simulating the hydrology of the Sindh watershed and its reliability to be utilized as a decision-making tool by decision-makers and researchers to influence strategies in the management of watershed processes.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


2021 ◽  
Author(s):  
Evgenia Koltsida ◽  
Nikos Mamassis ◽  
Andreas Kallioras

Abstract. SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed river basin model that has been widely used to evaluate the effects of alternative management decisions on water resources. This study, demonstrates the application of SWAT model for streamflow simulation in an experimental basin with daily and hourly rainfall observations to investigate the influence of rainfall resolution on model performance. The model was calibrated for 2018 and validated for 2019 using the SUFI-2 algorithm in the SWAT-CUP program. Daily surface runoff was estimated using the Curve Number method and hourly surface runoff was estimated using the Green and Ampt Mein Larson method. A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive for daily time intervals and channel routing parameters were more influential for hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better than the sub-daily model. The Curve Number method produced higher discharge peaks than the Green and Ampt Mein Larson method and estimated better the observed values. Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears to be a reliable tool to predict discharge over long periods of time.


2015 ◽  
Vol 737 ◽  
pp. 762-765 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

To investigate the impacts of land-use patterns on the sediment yield characteristics in the upper Huaihe River, Xixian hydrological controlling station was selected as the case study site. Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on sediment yield by the use of three-phase (1980s, 1990s and 2000s) land-use maps, soil type map (1:200000) and 1987 to 2008 daily time series of rainfall from the upper Huaihe River basin. On the basis of the simulated time series of daily sediment concentration, land-use change effects on spatio-temporal change patterns of soil erosion modulus. The results revealed that under the same condition of soil texture and terrain slope the advantage for sediment yield was descended by woodland, paddy field and farmland. The outputs of the paper could provide references for soil and water conservation and river health protection in the upper stream of Huaihe River.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alemu O. Aga ◽  
Assefa M. Melesse ◽  
Bayou Chane

Physical-based soil erosion models are playing an important role in the assessment of soil erosion, transportation, and deposition in the watershed. Most of these models were developed for data-rich areas of the world and they need a measured data to calibrate and validate their results. To apply such physical-based models, the main factor hindering is the lack of measured sediment data. The amount of sediment in the fluvial systems is the result of hydro-geomorphological processes of a watershed and the nature of stream flows. Therefore, this study aims to develop an alternative empirical model that generates the observed sediment data based on the hydro-geomorphology and nature of stream flows for Ziway Lake basin in the rift Valley of Ethiopia. By applying Soil and water Assessment Tool (SWAT), the lake basin was divided in to two sub-basins (Maki and Katar) with 26 of the watersheds within Maki. The SWAT model was calibrated and validated for both stream and sediment flow by using SUFI-2 program and its performance was assessed by using model evaluation statistics. With calibrated sediment flow rates of 26 Maki sub basins, an empirical model was developed by using its respective drainage area, average sub-basins slope, surface runoff, soil erodibility factor, stream flow rate, and average rive slopes. The applicability of the newly developed alternative model was tested by using model evaluation statistics and validated inside of Katar sub-basin. It is recommended to test the developed model in other basins to incorporate with SWAT CUP program to calibrate and validate the sediment yield at data scared area.


Author(s):  
Sarvat Gull ◽  
Shagoofta Rasool Shah

Abstract The conjunction of heavy snowfall during winters and intensive rainfall during monsoons along with the mountainous topography expose the Lidder watershed to serious erosion and flood aggravation issues. Barely any attempts have been made for an in-depth examination of Lidder watershed for precise estimation of sub-basin level runoff and erosion. In this study Soil and Water Assessment Tool (SWAT) was calibrated using Sequential Uncertainty Fitting algorithm (SUFI-2) for modelling streamflow and sediment yield of the Lidder watershed. Daily runoff and sediment event data from 2003–2013 were used in this study; data from 2003–2008 was used for calibration and 2009–2013 for validation. Model performance was evaluated using various statistical tools which showed good results revealing excellent potential of SWAT model to simulate streamflow and sediment yield for both calibration and validation periods. The annual rate of average upland sediment drawn from the watershed was approximately 853.96 Mg/ha for an average surface runoff of 394.15 mm/year. This study identifies the vulnerable areas of the Lidder watershed which can be thoroughly examined by decision-makers for effective management and planning. Further, the calibrated model can be applied to other watersheds with similar characterization to influence strategies in the management of watershed processes.


2018 ◽  
Vol 30 (3) ◽  
Author(s):  
Ayodele Olanrewaju Ogunlela ◽  
Odunayo Babatunde Omole ◽  
Kamorudeen Olaniyi Yusuf

Reservoir sedimentation is a serious problem that normally reduces the capacity of a dam (reservoir) for water storage over a given period of time. This can lead to insufficient availability of water for domestic uses, irrigation and hydropower. This study was conducted to determine the rate of sedimentation, sediment yield and the capacity of the University of Ilorin dam (Ilorin, Nigeria) between June 2007 and June 2014. Geographic Information System (GIS), Global Positioning System (GPS), canoe and lead-line techniques were used for the measurement of depth of the reservoir of the dam. Soil and Water Assessment Tool (SWAT) model was used to simulate the sediment yield. The initial capacity of the dam after construction in 2007 was 1.800 x 106 m3 but this capacity was reduced to 1.411 x 106 m3 in 2014 due to sedimentation. The sediment was found to be clay soil which covered 389,170 m3 of the reservoir and the mean bulk density of the clay soil sediment was 1139 kg/m3. The mean values of clay, silt and sand contents of the sediment yield were 46.5, 35.6 and 17.9 %, respectively. The annual sediment yield was high in the reservoir due to farming activities at the upstream end of the dam, annual rate of sedimentation was 12.78 m3/ha/yr and sediment yield was 14,557.14 kg/ha/yr. Farming activities should be prevented at the upstream of the dam and dredging should be done every 10 years when 30.87% of the storage capacity would be occupied by sediment.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3503
Author(s):  
Ty Sok ◽  
Chantha Oeurng ◽  
Ilan Ich ◽  
Sabine Sauvage ◽  
José Miguel Sánchez-Pérez

The Mekong River Basin (MRB) in Southeast Asia is among the world’s ten largest rivers, both in terms of its discharge and sediment load. The spatial and temporal resolution to accurately determine the sediment load/yield from tributaries and sub-basin that enters the Mekong mainstream still lacks from the large-scale model. In this study, the SWAT model was applied to the MRB to assess long-term basin hydrology and to quantify the sediment load and spatial sediment yield in the MRB. The model was calibrated and validated (1985–2016) at a monthly time step. The overall proportions of streamflow in the Mekong River were 34% from surface runoff, 21% from lateral flow, 45% from groundwater contribution. The average annual sediments yield presented 1295 t/km2/year in the upper part of the basin, 218 t/km2/year in the middle, 78 t/km2/year in the intensive agricultural area and 138 t/km2/year in the highland area in the lower part. The annual average sediment yield for the Mekong River was 310 t/km2/year from upper 80% of the total MRB before entering the delta. The derived sediment yield and a spatial soil erosion map can explicitly illustrate the identification and prioritization of the critical soil erosion-prone areas of the MR sub-basins.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 81
Author(s):  
Nura Boru Jilo ◽  
Bogale Gebremariam ◽  
Arus Edo Harka ◽  
Gezahegn Weldu Woldemariam ◽  
Fiseha Behulu

It is anticipated that climate change will impact sediment yield in watersheds. The purpose of this study was to investigate the impacts of climate change on sediment yield from the Logiya watershed in the lower Awash Basin, Ethiopia. Here, we used the coordinated regional climate downscaling experiment (CORDEX)-Africa data outputs of Hadley Global Environment Model 2-Earth System (HadGEM2-ES) under representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5). Future scenarios of climate change were analyzed in two-time frames: 2020–2049 (2030s) and 2050–2079 (2060s). Both time frames were analyzed using both RCP scenarios from the baseline period (1971–2000). A Soil and Water Assessment Tool (SWAT) model was constructed to simulate the hydrological and the sedimentological responses to climate change. The model performance was calibrated and validated using the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS). The results of the calibration and the validation of the sediment yield R2, NSE, and PBIAS were 0.83, 0.79, and −23.4 and 0.85, 0.76, and −25.0, respectively. The results of downscaled precipitation, temperature, and estimated evapotranspiration increased in both emission scenarios. These climate variable increments were expected to result in intensifications in the mean annual sediment yield of 4.42% and 8.08% for RCP4.5 and 7.19% and 10.79% for RCP8.5 by the 2030s and the 2060s, respectively.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 963-978 ◽  
Author(s):  
L. Palazón ◽  
L. Gaspar ◽  
B. Latorre ◽  
W. H. Blake ◽  
A. Navas

Abstract. Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood events but sediment fingerprinting identified areas that, due to high connectivity, contribute more to channel-stored sediment deposits.


Sign in / Sign up

Export Citation Format

Share Document