scholarly journals Linking climate change to soil loss estimation in the Kosi river basin, India

Author(s):  
Aadil Towheed ◽  
Thendiyath Roshni

Abstract This study assessed the spatio-temporal variability of soil loss based on rainfall–runoff erosivity in the context of climate change in the Kosi river basin. The observed rainfall data (1985–2017) were used for past and present analyses, and the projected rainfall data (2020–2100) interpolated for various general circulation models (GCMs) were used for future analysis. The results of rainfall analysis for the projected period show a maximum percentage variation of 26.2% for a particular GCM and an average of 9.4% increase in the rainfall data from all selected GCMs considering three representative concentration pathways (RCPs). We also evaluated the implications of change in the soil loss due to changes in the rainfall pattern and crop management factor for three time slices. The results for the projected time period showed a concomitant increase in the average soil loss of −13.03–10.39% with respect to the baseline. The average soil loss results for the time period of 2020–2100 are also compared with the average soil loss for each RCP scenario and found very meager changes in the area of soil erosion. The results due to climate change aid in prioritizing the areas with suitable conservation support practices.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2360 ◽  
Author(s):  
Pablo Blanco-Gómez ◽  
Patricia Jimeno-Sáez ◽  
Javier Senent-Aparicio ◽  
Julio Pérez-Sánchez

This study assessed how changes in terms of temperature and precipitation might translate into changes in water availability and droughts in an area in a developing country with environmental interest. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze the impacts of climate change on water resources of the Guajoyo River Basin in El Salvador. El Salvador is in one of the most vulnerable regions in Latin America to the effects of climate change. The predicted future climate change by two climate change scenarios (RCP 4.5 and RCP 8.5) and five general circulation models (GCMs) were considered. A statistical analysis was performed to identify which GCM was better in terms of goodness of fit to variation in means and standard deviations of the historical series. A significant decreasing trend in precipitation and a significant increase in annual average temperatures were projected by the middle and the end of the twenty–first century. The results indicated a decreasing trend of the amount of water available and more severe droughts for future climate scenarios with respect to the base period (1975–2004). These findings will provide local water management authorities useful information in the face of climate change to help decision making.


2021 ◽  
Author(s):  
Debajit Das ◽  
Tilottama Chakraborty ◽  
Mrinmoy Majumder ◽  
Tarun Kanti Bandyopadhyay

Abstract As climate change is linked with changes in precipitation, evapotranspiration and changes in other climatological parameters, these changes will be affected runoff of a river basin. Gomati River basin is the largest river basin among all the river basin of Tripura. Due to the increase in settlement in the Gomati river basin and climate change may threaten natural flow patterns that endure its diversity. This study assesses the impact of climate change on total flow of a catchment in North East India (Gomati River catchment). For this assessment, the Group Method of Data Handling Modeling System (GMDH) model was used to simulate the rainfall-runoff relationship of the catchment, with respect to the observed data during the period of 2008–2009. The statistically downscaled outputs of HadGEM2-ES (Hadley Centre Global Environment Model version 2), general circulation models (GCMs) scenario was used to assess the impacts of climate change on the Gomati River Basin. Future projections were developed for the 2030s, 2040s and 2050s projections, respectively. The results from the present study can contribute to the development of adaptive strategies and future policies for the sustainable management of water resources in North East, Tripura.


2020 ◽  
Vol 12 (15) ◽  
pp. 6036
Author(s):  
Yong Chen ◽  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Dana O. Porter ◽  
Jerry E. Moorhead ◽  
...  

Agricultural production in the Texas High Plains (THP) relies heavily on irrigation and is susceptible to drought due to the declining availability of groundwater and climate change. Therefore, it is meaningful to perform an overview of possible climate change scenarios to provide appropriate strategies for climate change adaptation in the THP. In this study, spatio-temporal variations of climate data were mapped in the THP during 2000–2009, 2050–2059, and 2090–2099 periods using 14 research-grade meteorological stations and 19 bias-corrected General Circulation Models (GCMs) under representative concentration pathway (RCP) scenarios RCP 4.5 and 8.5. Results indicated different bias correction methods were needed for different climatic parameters and study purposes. For example, using high-quality data from the meteorological stations, the linear scaling method was selected to alter the projected precipitation while air temperatures were bias corrected using the quantile mapping method. At the end of the 21st century (2090–2099) under the severe CO2 emission scenario (RCP 8.5), the maximum and minimum air temperatures could increase from 3.9 to 10.0 °C and 2.8 to 8.4 °C across the entire THP, respectively, while precipitation could decrease by ~7.5% relative to the historical (2000–2009) observed data. However, large uncertainties were found according to 19 GCM projections.


2014 ◽  
Vol 62 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Yeugeniy M. Gusev ◽  
Olga N. Nasonova

Abstract The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin


2015 ◽  
Vol 12 (2) ◽  
pp. 2201-2242 ◽  
Author(s):  
I. Chawla ◽  
P. P. Mujumdar

Abstract. Streamflow regime is sensitive to changes in land use and climate in a river basin. Quantifying the isolated and integrated impacts of land use and climate change on streamflow is challenging as well as crucial to optimally manage water resources in the river basin. This paper presents a simple hydrologic modelling based approach to segregate the impacts of land use and climate change on streamflow of a river basin. The upper Ganga basin in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modelled using a calibrated variable infiltration capacity hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban area and moderately sensitive to change in crop land area. However, variations in streamflow generally reproduce the variations in precipitation. Combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.


2015 ◽  
Vol 19 (8) ◽  
pp. 3633-3651 ◽  
Author(s):  
I. Chawla ◽  
P. P. Mujumdar

Abstract. Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 271 ◽  
Author(s):  
M. Islam ◽  
Nynke Hofstra ◽  
Ekaterina Sokolova

Climate change, comprising of changes in precipitation patterns, higher temperatures and sea level rises, increases the likelihood of future flooding in the Betna River basin, Bangladesh. Hydrodynamic modelling was performed to simulate the present and future water level and discharge for different scenarios using bias-corrected, downscaled data from two general circulation models. The modelling results indicated that, compared to the baseline year (2014–2015), the water level is expected to increase by 11–16% by the 2040s and 14–23% by the 2090s, and the monsoon daily maximum discharge is expected to increase by up to 13% by the 2040s and 21% by the 2090s. Sea level rise is mostly responsible for the increase in water level. The duration of water level exceedance of the established danger threshold and extreme discharge events can increase by up to half a month by the 2040s and above one month by the 2090s. The combined influence of the increased water level and discharge has the potential to cause major floods in the Betna River basin. The results of our study increase the knowledge base on climate change influence on water level and discharge at a local scale. This is valuable for water managers in flood-risk mitigation and water management.


2011 ◽  
Vol 15 (20) ◽  
pp. 1-25 ◽  
Author(s):  
Roland J. Viger ◽  
Lauren E. Hay ◽  
Steven L. Markstrom ◽  
John W. Jones ◽  
Gary R. Buell

Abstract The potential effects of long-term urbanization and climate change on the freshwater resources of the Flint River basin were examined by using the Precipitation-Runoff Modeling System (PRMS). PRMS is a deterministic, distributed-parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land cover on streamflow and multiple intermediate hydrologic states. Precipitation and temperature output from five general circulation models (GCMs) using one current and three future climate-change scenarios were statistically downscaled for input into PRMS. Projections of urbanization through 2050 derived for the Flint River basin by the Forecasting Scenarios of Future Land-Cover (FORE-SCE) land-cover change model were also used as input to PRMS. Comparison of the central tendency of streamflow simulated based on the three climate-change scenarios showed a slight decrease in overall streamflow relative to simulations under current conditions, mostly caused by decreases in the surface-runoff and groundwater components. The addition of information about forecasted urbanization of land surfaces to the hydrologic simulation mitigated the decreases in streamflow, mainly by increasing surface runoff.


2017 ◽  
Vol 284 (1847) ◽  
pp. 20162335 ◽  
Author(s):  
Jedediah F. Brodie ◽  
Matthew Strimas-Mackey ◽  
Jayasilan Mohd-Azlan ◽  
Alys Granados ◽  
Henry Bernard ◽  
...  

The responses of lowland tropical communities to climate change will critically influence global biodiversity but remain poorly understood. If species in these systems are unable to tolerate warming, the communities—currently the most diverse on Earth—may become depauperate (‘biotic attrition’). In response to temperature changes, animals can adjust their distribution in space or their activity in time, but these two components of the niche are seldom considered together. We assessed the spatio-temporal niches of rainforest mammal species in Borneo across gradients in elevation and temperature. Most species are not predicted to experience changes in spatio-temporal niche availability, even under pessimistic warming scenarios. Responses to temperature are not predictable by phylogeny but do appear to be trait-based, being much more variable in smaller-bodied taxa. General circulation models and weather station data suggest unprecedentedly high midday temperatures later in the century; predicted responses to this warming among small-bodied species range from 9% losses to 6% gains in spatio-temporal niche availability, while larger species have close to 0% predicted change. Body mass may therefore be a key ecological trait influencing the identity of climate change winners and losers. Mammal species composition will probably change in some areas as temperatures rise, but full-scale biotic attrition this century appears unlikely.


Sign in / Sign up

Export Citation Format

Share Document