scholarly journals Conceptual model building inspired by field-mapped runoff generation mechanisms

2018 ◽  
Vol 66 (3) ◽  
pp. 303-315 ◽  
Author(s):  
Alberto Viglione ◽  
Magdalena Rogger ◽  
Herbert Pirkl ◽  
Juraj Parajka ◽  
Günter Blöschl

Abstract Since the beginning of hydrological research hydrologists have developed models that reflect their perception about how the catchments work and make use of the available information in the most efficient way. In this paper we develop hydrologic models based on field-mapped runoff generation mechanisms as identified by a geologist. For four different catchments in Austria, we identify four different lumped model structures and constrain their parameters based on the field-mapped information. In order to understand the usefulness of geologic information, we test their capability to predict river discharge in different cases: (i) without calibration and (ii) using the standard split-sample calibration/ validation procedure. All models are compared against each other. Results show that, when no calibration is involved, using the right model structure for the catchment of interest is valuable. A-priori information on model parameters does not always improve the results but allows for more realistic model parameters. When all parameters are calibrated to the discharge data, the different model structures do not matter, i.e., the differences can largely be compensated by the choice of parameters. When parameters are constrained based on field-mapped runoff generation mechanisms, the results are not better but more consistent between different calibration periods. Models selected by runoff generation mechanisms are expected to be more robust and more suitable for extrapolation to conditions outside the calibration range than models that are purely based on parameter calibration to runoff data.

2020 ◽  
Vol 68 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Yuexiu Wen ◽  
Caihong Hu ◽  
Guodong Zhang ◽  
Shengqi Jian

AbstractThe Loess Plateau is the main source of water in Yellow River, China. After 1980s, the Yellow river water presented a significant reduction, what caused the decrease of the Yellow river discharge had been debated in academic circles. We proceeded with runoff generation mechanisms to explain this phenomenon. We built saturation excess runoff and infiltration excess runoff generation mechanisms for rainfall–runoff simulation in Jingle sub-basin of Fen River basin on the Loess Plateau, to reveal the influence of land use change on flood processes and studied the changes of model parameters under different underlying conditions. The results showed that the runoff generation mechanism was mainly infiltration-excess overland flow, but the flood events of saturation-excess overland flow had an increasing trend because of land use cover change (the increase of forestland and grassland areas and the reduction of cultivated land). Some of the model parameters had physical significances,such as water storage capacity (WM), infiltration capacity (f), evapotranspiration (CKE), soil permeability coefficient (k) and index of storage capacity distribution curve (n) showed increasing trends, and index of infiltration capacity distribution curve (m) showed a decreasing trend. The above results proved the changes of runoff generation mechanism from the perspective of model parameters in Jingle sub-basin, which can provide a new perspective for understanding the discharge reduction in the Yellow River basin.


1995 ◽  
Vol 10 (38) ◽  
pp. 2923-2930 ◽  
Author(s):  
DAIJIRO SUEMATSU ◽  
YOSHIO YAMAGISHI

We study the inflation due to the D-flat direction of an extra U(1). This scenario is a hybrid of a right-handed sneutrino inflaton scenario and a gauge nonsinglet inflaton scenario. The inflaton is a gauge nonsinglet field which induces a right-handed neutrino mass spontaneously through an extra U(1) D-flat direction. This right-handed neutrino mass can be used to explain the solar neutrino problem. The reheating temperature resulting from the decay of the coherent oscillation of the right-handed sneutrino is sufficiently high so that the baryogenesis based on the lepton number asymmetry can be applicable. We also discuss the realistic model building.


2019 ◽  
pp. 33-60
Author(s):  
Ranka Eric ◽  
Andrijana Todorovic ◽  
Jasna Plavsic ◽  
Vesna Djukic

Hydrologic models are important for effective water resources management at a basin level. This paper describes an application of the HEC-HMS hydrologic model for simulations of flood hydrographs in the Lukovska River basin. Five flood events observed at the Mercez stream gauge were available for modelling purposes. These events are from two distinct periods and two seasons with different prevailing runoff generation mechanisms. Hence the events are assigned to either ?present? or ?past?, and ?spring? or ?summer? group. The optimal parameter sets of each group are obtained by averaging the optimal parameters for individual events within the group. To assess model transferability, its applicability for simulation of flood events which are not considered in the model calibration, a cross-validation is performed. The results indicate that model parameters vary across the events, and that parameter transfer generally leads to considerable errors in hydrograph peaks and volumes, with the exception of simulation of summer events with ?spring? parameters. Based on these results, recommendations for event-based modeling are given.


2020 ◽  
Author(s):  
Sina Khatami

Catchment models are conventionally evaluated in terms of their response surface or likelihood surface constructed from model runs using different sets of model parameters. Model evaluation methods are mainly based upon the concept of the equifinality of model structures or parameter sets. The operational definition of equifinality is that multiple model structures/parameters are equally capable of producing acceptable simulations of catchment processes such as runoff. Examining various aspects of this convention, in this thesis I demonstrate their shortcomings and introduce improvements including new approaches and insights for evaluating catchment models as multiple working hypotheses (MWH). First (Chapter 2), arguing that there is more to equifinality than just model structures/parameters, I propose a theoretical framework to conceptualise various facets of equifinality, based on a meta-synthesis of a broad range of literature across geosciences, system theory, and philosophy of science. I distinguish between process-equifinality (equifinality within the real-world systems/processes) and model-equifinality (equifinality within models of real-world systems), explain various aspects of each of these two facets, and discuss their implications for hypothesis testing and modelling of hydrological systems under uncertainty. Second (Chapter 3), building up on this theoretical framework, I propose that characterising model-equifinality based on model internal fluxes — instead of model parameters which is the current approach to account for model-equifinality — provides valuable insights for evaluating catchment models. I developed a new method for model evaluation — called flux mapping — based on the equifinality of runoff generating fluxes of large ensembles of catchment model simulations (1 million model runs for each catchment). Evaluating the model behaviour within the flux space is a powerful approach, beyond the convention, to formulate testable hypotheses for runoff generation processes at the catchment scale. Third (Chapter 4), I further explore the dependency of the flux map of a catchment model upon the choice of model structure and parameterisation, error metric, and data information content. I compare two catchment models (SIMHYD and SACRAMENTO) across 221 Australian catchments (known as Hydrologic Reference Stations, HRS) using multiple error metrics. I particularly demonstrate the fundamental shortcomings of two widely used error metrics — i.e. Nash–Sutcliffe efficiency and Willmott’s refined index of agreement — in model evaluation. I develop the skill score version of Kling–Gupta efficiency (KGEss), and argue it is a more reliable error metric that the other metrics. I also compare two strategies of random sampling (Latin Hypercube Sampling) and guided search (Shuffled Complex Evolution) for model parameterisation, and discuss their implications in evaluating catchment models as MWH. Finally (Chapter 5), I explore how catchment characteristics (physiographic, climatic, and streamflow response characteristics) control the flux map of catchment models (i.e. runoff generation hypotheses). To this end, I formulate runoff generating hypotheses from a large ensemble of SIMHYD simulations (1 million model runs in each catchment). These hypotheses are based on the internal runoff fluxes of SIMHYD — namely infiltration excess overland flow, interflow and saturation excess overland flow, and baseflow — which represent runoff generation at catchment scale. I examine the dependency of these hypotheses on 22 different catchment attributes across 186 of the HRS catchments with acceptable model performance and sufficient parameter sampling. The model performance of each simulation is evaluated using KGEss metric benchmarked against the catchment-specific calendar day average observed flow model, which is more informative than the conventional benchmark of average overall observed flow. I identify catchment attributes that control the degree of equifinality of model runoff fluxes. Higher degree of flux equifinality implies larger uncertainties associated with the representation of runoff processes at catchment scale, and hence pose a greater challenge for reliable and realistic simulation and prediction of streamflow. The findings of this chapter provides insights into the functional connectivity of catchment attributes and the internal dynamics of model runoff fluxes.


2015 ◽  
Vol 63 (3) ◽  
pp. 246-254 ◽  
Author(s):  
David Zumr ◽  
Tomáš Dostál ◽  
Jan Devátý

Abstract The fact that flash floods initiated in arable catchments are often accompanied by massive sediment and nutrient loads often leads to the assumption that surface runoff is the principle pathway by which runoff reaches watercourses. On the basis of an evaluation of several rainfall-runoff events in a representative agricultural catchment, we show that runoff from cultivated land may be generated in a way similar to that seen on forested slopes, where shallow subsurface runoff is the predominant pathway by which runoff makes its way to watercourses in most runoff events. To identify the predominant runoff pathway, we employed a combination of turbidity measurements and stream discharge data. Suspended sediment flux, a newly introduced index representing the ratio between precipitation duration and total sediment yield, and direction of the discharge-turbidity hysteresis loops were proposed as reflective indicators of the frequency of runoff via different pathways. In our study, most of the events initiated by rainstorms of various intensities and durations resulted in rapid increases in stream discharge. Although we observed temporal variability of topsoil properties attributable to seasonal weather changes and agricultural activities, e.g. bulk density and porosity, runoff generation was mainly driven by precipitation characteristics and the initial catchment saturation.


2020 ◽  
Author(s):  
Sotirios Moustakas ◽  
Patrick Willems

<p>Nowadays, a plethora of modelling software on rainfall-runoff and groundwater dynamics are available. Considering the complexity and heterogeneity of natural processes governing the water cycle, many of those models involve physically-based formulations. Inevitably, a large amount of data is also required. However, the available data are often insufficient, while their quality questionable. At the same time, an increasing model complexity also gives rise to high computational requirements. In order to mitigate some of the aforementioned issues, during the past years a simple and flexible top-down approach for distributed rainfall-runoff modelling has been developed (Tran et al., 2018). Essentially, the distributed rainfall-runoff model is built starting from a simple lumped model, whose parameters are then spatially disaggregated. Disaggregation is carried out using conceptual links between model parameters and natural catchment characteristics.</p><p>We now test an extended version of this methodology involving disaggregation relationships for more model parameters. Moreover, we evaluate modelling performance for 2 different configurations. The first starts from the parameters of a lumped conceptual model and is essentially the original approach. The second one starts from the parameters of a uniform distributed conceptual model. The motivation behind the new approach is that it allows a better-integrated routing scheme with less model parameters. In turn, this can further reduce equifinality (denoting the “phenomenon” that largely different parameter-sets can often result to largely similar model outcomes). The two approaches are inter-compared and evaluated against flow observations.</p><p>With the disaggregated models as basis, we also experiment on the potential of simple methods for modelling groundwater levels. We approach this challenge by trying to identify links between a) the variations and b) the reference levels of the modelled groundwater storages and observed groundwater levels. For example, we hypothesize that modelled storages can be scaled to the actual level variations via the specific yield, which expresses the amount of interconnected pores in the soil. The modelling methodology is evaluated against groundwater level measurements.</p><p> </p><p>Tran, Q.Q., De Niel, J., Willems, P., 2018. Spatially Distributed Conceptual Hydrological Model Building: A Generic Top-Down Approach Starting From Lumped Models. Water Resour. Res. 54, 8064–8085.</p>


Marketing ZFP ◽  
2019 ◽  
Vol 41 (4) ◽  
pp. 33-42
Author(s):  
Thomas Otter

Empirical research in marketing often is, at least in parts, exploratory. The goal of exploratory research, by definition, extends beyond the empirical calibration of parameters in well established models and includes the empirical assessment of different model specifications. In this context researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the 'true' set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of this paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. I find that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model.


2021 ◽  
Vol 9 (5) ◽  
pp. 467
Author(s):  
Mostafa Farrag ◽  
Gerald Corzo Perez ◽  
Dimitri Solomatine

Many grid-based spatial hydrological models suffer from the complexity of setting up a coherent spatial structure to calibrate such a complex, highly parameterized system. There are essential aspects of model-building to be taken into account: spatial resolution, the routing equation limitations, and calibration of spatial parameters, and their influence on modeling results, all are decisions that are often made without adequate analysis. In this research, an experimental analysis of grid discretization level, an analysis of processes integration, and the routing concepts are analyzed. The HBV-96 model is set up for each cell, and later on, cells are integrated into an interlinked modeling system (Hapi). The Jiboa River Basin in El Salvador is used as a case study. The first concept tested is the model structure temporal responses, which are highly linked to the runoff dynamics. By changing the runoff generation model description, we explore the responses to events. Two routing models are considered: Muskingum, which routes the runoff from each cell following the river network, and Maxbas, which routes the runoff directly to the outlet. The second concept is the spatial representation, where the model is built and tested for different spatial resolutions (500 m, 1 km, 2 km, and 4 km). The results show that the spatial sensitivity of the resolution is highly linked to the routing method, and it was found that routing sensitivity influenced the model performance more than the spatial discretization, and allowing for coarser discretization makes the model simpler and computationally faster. Slight performance improvement is gained by using different parameters’ values for each cell. It was found that the 2 km cell size corresponds to the least model error values. The proposed hydrological modeling codes have been published as open-source.


2017 ◽  
Vol 47 (4) ◽  
pp. 633-644 ◽  
Author(s):  
Bruno Rodrigues Carvalho ◽  
Paulo Tarso Luiz Menezes

ABSTRACT: The marine controlled-source electromagnetic (CSEM) method provides complementary information to seismic imaging in the exploration of sedimentary basins. The CSEM is mainly used for reservoir scanning and appraisal. The CSEM interpretation workflow is heavily based on inversion and forward - modeling for hypothesis testing. Until the recent past, the effectiveness of a given workflow was achieved after the drilling results, as there wasn’t any geological complex model available to serve as a benchmark. In the present paper, we describe the workflow to build up Marlim R3D, a realistic and complex geoelectric model. Marlim R3D aims to be a reference model of turbidite reservoirs of the Brazilian continental margin. Our model is based on seismic interpretation and constrained by the input of available well-log information. The workflow used is composed of seven steps: seismic and well-log dataset loading, well-tie, Vp cube construction, Vp resistivity calibration, time-depth conversion, resistivity cube construction, and quality-control check. As a result, we obtained an interpreted dataset composed by main stratigraphic horizons, pseudo-well logs, and the resistivity cubes. These elements were made freely available for research or commercial use, under the Creative Common License, at the Zenodo platform.


2003 ◽  
Vol 10 (3) ◽  
pp. 401-410
Author(s):  
M. S. Agranovich ◽  
B. A. Amosov

Abstract We consider a general elliptic formally self-adjoint problem in a bounded domain with homogeneous boundary conditions under the assumption that the boundary and coefficients are infinitely smooth. The operator in 𝐿2(Ω) corresponding to this problem has an orthonormal basis {𝑢𝑙} of eigenfunctions, which are infinitely smooth in . However, the system {𝑢𝑙} is not a basis in Sobolev spaces 𝐻𝑡 (Ω) of high order. We note and discuss the following possibility: for an arbitrarily large 𝑡, for each function 𝑢 ∈ 𝐻𝑡 (Ω) one can explicitly construct a function 𝑢0 ∈ 𝐻𝑡 (Ω) such that the Fourier series of the difference 𝑢 – 𝑢0 in the functions 𝑢𝑙 converges to this difference in 𝐻𝑡 (Ω). Moreover, the function 𝑢(𝑥) is viewed as a solution of the corresponding nonhomogeneous elliptic problem and is not assumed to be known a priori; only the right-hand sides of the elliptic equation and the boundary conditions for 𝑢 are assumed to be given. These data are also sufficient for the computation of the Fourier coefficients of 𝑢 – 𝑢0. The function 𝑢0 is obtained by applying some linear operator to these right-hand sides.


Sign in / Sign up

Export Citation Format

Share Document