scholarly journals The Image Brightness Control System Dedicated For The Autonomous Unmanned Aerial Vehicle

2014 ◽  
Vol 32 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Jakub Cieśluk ◽  
Zdzisław Gosiewski

Abstract The investigations of systems which allow to avoid obstacles by the unmanned aerial vehicles (UAV) are presented in the paper. The systems are designed to enable the full autonomous UAV flight in unknown, dynamic environment. Presented solutions enable to real-time control of the image brightness, without significantly disturbing the objectivity of the vision system. Single board ADSP-BF537 computer with built-in CMOS camera was used in the experimental studies. The final stage of the task is to perform fully autonomous missions of flying object with the real obstacles on its trajectory.

Author(s):  
M. V. Akinin ◽  
N. V. Akinina ◽  
A. Y. Klochkov ◽  
M. B. Nikiforov ◽  
A. V. Sokolova

The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 391
Author(s):  
Luca Bigazzi ◽  
Stefano Gherardini ◽  
Giacomo Innocenti ◽  
Michele Basso

In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.


2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


2021 ◽  
Vol 13 ◽  
pp. 175682932110168
Author(s):  
Hasan Karali ◽  
Gokhan Inalhan ◽  
M Umut Demirezen ◽  
M Adil Yukselen

In this work, a computationally efficient and high-precision nonlinear aerodynamic configuration analysis method is presented for both design optimization and mathematical modeling of small unmanned aerial vehicles. First, we have developed a novel nonlinear lifting line method which (a) provides very good match for the pre- and post-stall aerodynamic behavior in comparison to experiments and computationally intensive tools, (b) generates these results in order of magnitudes less time in comparison to computationally intensive methods such as computational fluid dynamics. This method is further extended to a complete configuration analysis tool that incorporates the effects of basic fuselage geometries. Moreover, a deep learning based surrogate model is developed using data generated by the new aerodynamic tool that can characterize the nonlinear aerodynamic performance of unmanned aerial vehicles. The major novel feature of this model is that it can predict the aerodynamic properties of unmanned aerial vehicle configurations by using only geometric parameters without the need for any special input data or pre-process phase as needed by other computational aerodynamic analysis tools. The obtained black-box function can calculate the performance of an unmanned aerial vehicle over a wide angle of attack range on the order of milliseconds, whereas computational fluid dynamics solutions take several days/weeks in a similar computational environment. The aerodynamic model predictions show an almost 1-1 coincidence with the numerical data even for configurations with different airfoils that are not used in model training. The developed model provides a highly capable aerodynamic solver for design optimization studies as demonstrated through an illustrative profile design example.


Author(s):  
E. G. Semenova ◽  
◽  
M. I. Bakustina ◽  

The article is devoted to the creation of a method for preparing an unmanned aerial vehicle for implementation as a finished packaged product. To achieve the goal, modern methods of standardization and quality control are used.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


2021 ◽  
Vol 2 (2) ◽  
pp. 105-115
Author(s):  
Mahmod Al-Bkree

This work is to optimize perimeter surveillance and explore the distribution of ground bases for unmanned aerial vehicles along the Jordanian border and optimize the set of technologies for each aerial vehicle. This model is part of ongoing research on perimeter security systems based on unmanned aerial vehicles. The suggested models give an initial insight about selecting technologies carried by unmanned aerial vehicles based on their priority; it runs for a small scale system that can be expanded, the initial results show the need for at least four ground bases along the length of the border, and a selected set of various technologies for each vehicle.


Sign in / Sign up

Export Citation Format

Share Document