scholarly journals Evaluation of meteorological drought using the Standardized Precipitation Index (SPI) in the High Ziz River basin, Morocco

2019 ◽  
Vol 19 (3) ◽  
pp. 125-135 ◽  
Author(s):  
Khadija Diani ◽  
Ilias Kacimi ◽  
Mahmoud Zemzami ◽  
Hassan Tabyaoui ◽  
Ali Torabi Haghighi

Abstract One of the adverse impacts of climate change is drought, and the complex nature of droughts makes them one of the most important climate hazards. Drought indices are generally used as a tool for monitoring changes in meteorological, hydrological, agricultural and economic conditions. In this study, we focused on meteorological drought events in the High Ziz river Basin, central High Atlas, Morocco. The application of drought index analysis is useful for drought assessment and to consider methods of adaptation and mitigation to deal with climate change. In order to analyze drought in the study area, we used two different approaches for addressing the change in climate and particularly in precipitation, i) to assess the climate variability and change over the year, and ii) to assess the change within the year timescale (monthly, seasonally and annually) from 1971 to 2017. In first approach, precipitation data were used in a long time scale e.g. annual and more than one-year period. For this purpose, the Standardized Precipitation Index (SPI) was considered to quantify the rainfall deficit for multiple timescales. For the second approach, trend analysis (using the Mann-Kendall (M-K) test) was applied to precipitation in different time scales within the year. The results showed that the study area has no significant trend in annual rainfall, but in terms of seasonal rainfall, the magnitude of rainfall during summer revealed a positive significant trend in three stations. A significant negative and positive trend in monthly rainfall was observed only in April and August, respectively.

2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2019 ◽  
Vol 11 (4) ◽  
pp. 956-965 ◽  
Author(s):  
C. H. J. Bong ◽  
J. Richard

Abstract Severe droughts in the year 1998 and 2014 in Sarawak due to the strong El Niño has impacted the water supply and irrigated agriculture. In this study, the Standardized Precipitation Index (SPI) was used for drought identification and monitoring in Sarawak River Basin. Using monthly precipitation data between the year 1975 and 2016 for 15 rainfall stations in the basin, the drought index values were obtained for the time scale of three, six and nine months. Rainfall trend for the years in study was also assessed using the Mann–Kendall test and Sen's slope estimator and compared with the drought index. Findings showed that generally there was a decreasing trend for the SPI values for the three time scales, indicating a higher tendency of increased drought event throughout the basin. Furthermore, it was observed that there was an increase in the numbers of dry months in the recent decade for most of the rainfall stations as compared to the previous 30 to 40 years, which could be due to climate change. Findings from this study are valuable for the planning and formulating of drought strategies to reduce and mitigate the adverse effects of drought.


2019 ◽  
pp. 97-101 ◽  
Author(s):  
Safwan A. Mohammed ◽  
Endre Harsányi

 Drought is one of the natural hazard risks which badly affects both agricultural and socio-economic sectors. Hungary, which is located in Eastern Europe has been suffering from different drought cycles; therefore, the aim of this study is to analyse the rainfall data obtained from ten metrological stations (Békéscsaba, Budapest, Debrecen, Győr, Kékestető, Miskolc, Pápa, Pécs, Szeged, Siófok, Szolnok) between 1985 and 2016, by using the Standardized Precipitation Index (SPI). The results showed that 2011 was recorded as the worst drought cycle of the studied period, where the SPI ranged between -0.22 (extreme drought) in Siófok, and 0.15 (no drought) in Miskolc. In a similar vein, the study highlighted the year 2010 to be the best hydrological year, when the SPI reached 0.73 (mildly wet) on average. Interestingly, the Mann-Kendall trend test for the drought cycle showed no positive trends in the study area. Finally, more investigation should be conducted into the climate change spatial drought cycle in Europe.


2014 ◽  
Vol 12 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Mladen Milanovic ◽  
Milan Gocic ◽  
Slavisa Trajkovic

Drought represents a combined heat-precipitation extreme and has become an increasingly frequent phenomenon in recent years. In order to access the entire analysis of drought, it is necessary to include the analysis of several types of drought. In this paper, impacts of meteorological and agricultural drought were analyzed across the Standardized Precipitation Index (SPI) and Agricultural Rainfall Index (ARI) on the territory of Serbia for the period from 1980 to 2010. For both types of drought, year 2000 is notable as the year when most of the observed stations had the highest drought intensity. It was found that meteorological drought for year 2000 has a higher intensity in the central and southeastern parts of the country, as well as in the north. Of all the stations, the highest intensity of meteorological drought was observed at Loznica station in 1989. Agricultural drought in 2000 had the lowest intensity in western Serbia.


2020 ◽  
Author(s):  
Shuang Zhu

<p><span lang="EN-US"><span>Climate change has been proved to exacerbate drought events and further cause huge economic and ecological losses worldwide. Therefore, it is of great significance to study the long-term evolution characteristics of drought events and quantify the impact of drought events on typical ecological indexes. Based on the measured historical precipitation data, the standardized precipitation index of different time scales was extracted to measure water deficit. The leaf area index with wide range and high precision was generated based on the Modis remote sensing image and denoising processing to represent vegetation growth. Trend analysis and change point analysis were carried out to study the spatiotemporal evolution characteristics of the concerned drought indexes. Then, with hypothesis test, appropriate copula multivariate analysis method was innovatively introduced to construct joint distribution of the standardized precipitation index and leaf area index. The contribution of drought on vegetation growth was expected to be quantified by deriving the conditional copula and preset marginal distributions. The upper Yangtze River where biomass is extremely sensitive to climate change was taken as a study area. The results show that drought events in this region have significant spatial heterogeneity. The leaf area index is highly influenced by the meteorological drought index. From no drought to severe drought, the vegetation index is distributed more and more toward the low value. Copula is very potential to find the inner relationship of the standardized precipitation index and leaf area index. The study is useful to deepen the understanding of the internal mechanism of drought events and discuss reasonable disaster prevention and mitigation countermeasures.</span></span></p> <p> </p>


2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Francisco de Assis Salviano de Sousa ◽  
Maria José Herculano Macedo ◽  
Roni Valter de Souza Guedes ◽  
Vicente de Paulo Rodrigues da Silva

Sign in / Sign up

Export Citation Format

Share Document