scholarly journals Experimental and finite element analysis of slope stability treated by lime milk (case of El Amir Abdelkader embankment)

2021 ◽  
Vol 25 (1) ◽  
pp. 77-83
Author(s):  
Zeyneb Belabbaci ◽  
Amina Tahar Berrabah ◽  
Djamel Eddine Bouri

Abstract This paper presents an experimental stabilization approach of the landslide that threatens a slope located near the city of El Amir Abdelkader, Ain Temouchent, Algeria. Stabilization is assured by the addition of lime milk, and then a numerical validation of the results with respect to the safety coefficient before and after treatment was performed by “Plaxis” software. Experimental results show that the stabilization by lime milk improves compaction parameters, swelling and shear strength, particularly the cohesion and friction angle, the latter permitting appreciation of the sliding surface on which it is necessary to base the calculation of the safety coefficient before and after treatment. Numerical results indicate that the factor of safety increases with the improvement of the mechanical characteristics c and ϕ, which are improved by increasing lime milk percentage. The numerical validation using “Plaxis” finite element code gives results that are in perfect agreement with the experimental ones, indicating that this software is a good tool for slope stability study.

2020 ◽  
Author(s):  
Fang-Cing Liu ◽  
Chih-Hsuan Liu ◽  
Ching Hung

<p>  In slope stability analysis, two-dimensional (2D) analysis techniques are usually applied due to its simplicity and extensive applicability. Given that slope failures are three-dimensional (3D) in nature, especially in the slope with complex geometry, a 3D slope stability analysis could lead to more reasonable results [1]. In slope stability analyses, limit equilibrium method (LEM) and finite element method (FEM) are widely used. Note that LEM only satisfies equations of statics and does not consider strain and displacement compatibility; FEM may encounter significant mesh distortion during large deformations where convergence difficulty and the analysis may be terminated before the slope reaches failure [2]. In the study, a Coupled Eulerian-Lagrangian (CEL) method, which allows materials to flow through fixed meshes regardless of distortions, was utilized to investigate 3D slope stability [3]. Validation of the numerical modeling was first presented using a typically assumed 3D slope. After the validation, various types of slopes (i.e. turning corners, convex- and concave-shaped surfaces) with various boundary conditions (unrestrained, semi-restrained, and fully restrained) are carefully conducted to examine the 3D slope stability. It is anticipated the 3D analyses can shed some light on the slope stability analysis with extreme or complex geometry cases and provide more reasonable results.</p><p> </p><p>REFERENCE</p><ol><li>T.-K. Nian, R.-Q. Huang, S.-S. Wan, and G.-Q. Chen (2012): Three-dimensional strength-reduction finite element analysis of slopes: geometric effects. Canadian Geotechnical Journal, 49: 574–588.</li> <li>C. Hung, C.-H. Liu, G.-W. Lin and Ben Leshchinsky (2019): The Aso-Bridge coseismic landslide: a numerical investigation of failure and runout behavior using finite and discrete element methods. Bulletin of Engineering Geology and the Environment. doi: 10.1007/s10064-018-1309-3.</li> <li>C. Han. Lin, C. Hung and T.-Y. Hsu (2020): Investigations of granular material behaviors using coupled Eulerian-Lagrangian technique: From granular collapse to fluid-structure interaction. Computers and Geotechnics (under review).</li> </ol><p> </p><p> </p>


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2012 ◽  
Vol 197 ◽  
pp. 686-690
Author(s):  
Amer Sattar ◽  
Irfan Anjum Manarvi ◽  
Manzar Masud

Wrinkling is one of the most undesirable effects during forming of thin sheet metal plates. It deforms the surfaces and either hampers further assembly or creates stress concentration regions which may fail during operations. Yoshida wrinkling test is considered as one good tool to analyse the wrinkling properties of sheet metals. Alluminium alloys are most commonly used in aviation industry where wrinkling initiation and its propagation is considered an even serious defect. Present research was therefore focussed on Finite Element simulations of Allumium Alloy-5456-H116 metal sheets specimens of the standard shape of Yoshida specimen. During simulations the applied load values were equal to Yield strength, yield strength +10%, and Yield strength -10%. Wrinkling initiation and propagation was observed as deformations along X,Y and Z axis on a predefined path of the specimen and stress values at this path were also evaluated. Findings have been established through an overview of deformation along each axis corresponding to stress values at that location on the path.


2018 ◽  
Vol 53 ◽  
pp. 03076
Author(s):  
RUAN Jin-kui ◽  
ZHU Wei-wei

In order to study the sensitivity of factors affecting the homogeneous building slope stability, the orthogonal test design method and shear strength reduction finite element method were used. The stability safety factor of the slope was used as the analysis index, and the range analysis of results of 18 cases were carried out. The results show that the order of sensitivity of slope stability factors is: internal friction angle, slope height, cohesion, slope angle, bulk density, elastic modulus, Poisson's ratio. The analysis results have reference significance for the design and construction of building slope projects.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


Author(s):  
Shazia M. Alam ◽  
Mahdy Allam ◽  
Chittaranjan Sahay

The compressor stator assembly of a jet engine normally consists of stainless steel and Inconel alloys. Nickel based alloys can be also used as brazing material. Mechanical distortion of the stator assembly components may result during the brazing process. The coefficient of thermal expansion of the component materials, thermal history of manufacturing and operation also contribute to the stator deformation. The purpose of this work is to study the factors causing the distortion in vane stages. The study uses Finite Element Analysis tool ANSYS 5.7 for modeling the engine stator assembly. A finite element structural analysis of a single airfoil model is conducted at various repair points to assess the airfoil deformation and stress levels, before and after the brazing process. It is then used to identify materials and brazing parameters responsible for the observed distortion. The model analyzed shows general agreement between the numerical results and observations from the repair process. The probable causes of distortion are found and recommendations for fixing the distortion problem are also made.


Author(s):  
Ahsan Mian ◽  
Jesse Law

Assessment of neural biocompatibility requires that materials be tested with exposure in neural fluids. Laser bonded microjoint samples made from titanium foil and polyimide film (TiPI) were evaluated for mechanical performance before and after exposure in artificial cerebrospinal fluid (CSF) for two, four and twelve weeks at 37°C. These samples represent a critical feature i.e., the microjoint — a major weakness in the bioencapsulation system. The laser microbonds showed initial degradation up to four weeks which then stabilized afterwards and retained similar strength until twelve weeks. To understand this bond degradation mechanism better, a finite element modeling approach was adopted. From the finite element results, it was revealed that the bond degradation was not owing to the hygroscopic expansion of polyimide. Rather, relaxation of the process induced residual stresses may have resulted in weakening of the bond strength as observed from experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document