scholarly journals Ca4−xLa2+xTi5−xBxO17 (B = Al, Ga) dielectric ceramics for microwave applications

2020 ◽  
Vol 38 (1) ◽  
pp. 73-78
Author(s):  
Raz Muhammad ◽  
Amir Khesro

AbstractIn this study, Ca4−xLa2+xTi5−xBxO17 (B = Al, Ga; x = 0, 1) ceramics were processed via a mixed oxide solid state sintering route and characterized using XRD, SEM, EDS and Vector Network Analyzer. Phase analysis of the samples showed single phase formation for the sample x = 0 while secondary phases formed for Ca4−xLa2+xTi5−xBxO17 (B = Al, Ga; x = 1) ceramics. Ca4La2Ti5O17 exhibited ∈r = 74, Q×fo = 14,116 GHz and τf = 157 ppm/°C. The substitution of Ga or Al for Ti at the B-site of Ca4La2Ti5O17 ceramics significantly improved the microwave dielectric properties i.e. Ca3La3Ti4GaO17 and Ca3La3Ti4AlO17 have ∈r = 44, Q×fo = 16,128 GHz and τf = 7.3 ppm/°C and ∈r = 46, Q×fo = 13,754 GHz and τf = −2 ppm/°C, respectively. The microwave dielectric properties of these materials are suitable for high frequency microwave applications.

2014 ◽  
Vol 32 (2) ◽  
pp. 297-300
Author(s):  
Abdul Manan ◽  
Sami Khan ◽  
Ibrahim Qazi

AbstractCa2Ce2Ti5O16 dielectric ceramics prepared by conventional solid-state ceramic route was investigated. Phase composition and microwave dielectric properties were measured using XRD and Vector network analyzer, respectively. XRD analysis of the calcined and sintered samples revealed the formation of CeO2 and another unidentified phase (that vanished at ≥ 1400 °C) as secondary phases along with the parent Ca2Ce2Ti5O16 phase. The amount of the parent Ca2Ce2Ti5O16 phase increased with increasing sintering temperature from 1350 °C to 1450 °C accompanied by a decrease in the apparent density. The density decreased but ɛr and Qu f o increased with sintering temperature. An er ~ 81.5, Qu fo ~5915 GHz and t f ~ 219 GHz were achieved for the sample sintered at 1450 °C.


2014 ◽  
Vol 28 (15) ◽  
pp. 1450092 ◽  
Author(s):  
Abdul Manan ◽  
Imtiaz Hussain

Ba 4 LaTi 0.3 Sn 0.7 O 15 ceramic was prepared through conventional solid state mix oxide route followed by characterization using X-ray diffraction (XRD) and scanning electron microscope (SEM) for phase and microstructural investigation. The dielectric properties at low and microwave frequencies were measured using LCR meter and vector network analyzer. XRD results revealed single phase ceramics and the microstructure was comprised of compact grains with size ranging from 4–12 μm. The lattice parameters refined by the least squares method were a = b = 5.7680(2) Å, c = 11.7491(6) Å, V = 337.81 Å3 and Z = 1. Optimum properties i.e., εr~44.6, Qufo~15, 500 GHz and τf~2.05 ppm /° C were achieved for Ba 4 LaTi 0.3 Sn 0.7 Nb 3 O 15 ceramic sintered at 1475°C for 4 h.


2007 ◽  
Vol 280-283 ◽  
pp. 19-22
Author(s):  
Ying Chun Zhang ◽  
Zhen Xing Yue ◽  
Jin Wang ◽  
Zhi Lun Gui ◽  
Long Tu Li

The microstructure and microwave dielectric properties of dielectric ceramics comprised of ZnNb2(1-x)TixO(6-3x) (x = 0 ~ 1) were investigated systematically using X-ray powder diffraction, SEM and a network analyzer in this study. The results showed that four phases were observed in this system. The dielectric properties at microwave frequencies exhibit a significant dependence on the composition and crystal structure of the ceramics. The dielectric constant ( er) of ZnNb2(1-x)TixO(6-3x)ceramics increases with increasing Ti content and the quality factors (Q ×f) significantly decreased. However, the temperature coefficient of resonant frequency ( t f ) changes from –59.08 ppm/oC at x = 0 to + 25.1 ppm/oC at x = 1, and a zero temperature coefficient of resonant frequency ( t f ) for this ceramics system was obtained at x = 0.84.


2007 ◽  
Vol 336-338 ◽  
pp. 265-268 ◽  
Author(s):  
Ying Chun Zhang ◽  
Xiu Hong Yang ◽  
Zhen Xing Yue ◽  
Fei Zhao ◽  
Long Tu Li

The crystal structure, phase relation, microstructure and dielectric properties of microwave dielectric ceramics comprised of Zn(Nb1-xTax)2O6 were investigated systematically using XRD, SEM and a network analyzer in this study. XRD results show that the Zn(Nb1-xTax)2O6 ceramics have the orthorhombic for all x values. However, two kinds of solid solutions phase regions based on columbite structure and ZnTa2O6 structure were observed. SEM results show that the growth of grains is restrained with increase of Ta content in Zn(Nb1-xTax)2O6 ceramics. The dielectric properties exhibited a significant dependence on the crystal structure and compositions of the ceramics. The dielectric constant (εr) of Zn(Nb1-xTax)2O6 ceramics increased with increasing Ta content. However, the quality factors (Q×f) of this system show a different trend, and decrease with increasing Ta content. At x=0.65, a zero temperature coefficient of resonant frequency ( τ f) can be realized in Zn(Nb1-xTax)2O6 ceramics system.


2018 ◽  
Vol 35 (4) ◽  
pp. 767-772
Author(s):  
Abdul Manan ◽  
Arbab Safeer Ahmad ◽  
Atta Ullah ◽  
Abid A Shah

Abstract Sr5Ta4TiO17 ceramics was processed via solid state mixed oxide sintering route. X-ray diffraction revealed single phase formation of Sr5Ta4TiO17 ceramics that crystallized into an orthorhombic crystal structure with a space group Pnnm with lattice parameters of a = 5.681 Å, b = 32.542 Å and c = 3.968 Å, refined by the least squares method. The unit cell density (ρth) was 6.71 g/cm3. The microstructure consisted of plate-like grains and the average size was increased from 2 μm to 5 μm with an increase in sintering temperature from 1450 °C to 1575 °C. Optimum microwave dielectric properties, i.e. єr ~ 66,Qufo ~ 8500 GHz and τf ~ 180 ppm/°C, were achieved for Sr5TaTiO17 ceramics sintered at 1550 °C for 4 h.


2016 ◽  
Vol 34 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Abdul Manan ◽  
Atta Ullah ◽  
Arbab Safeer Ahmad

AbstractSrLa4Ti5−xSnxO17 (0 ≤ x ≤ 2) ceramics were fabricated through solid state ceramic route and their microwave dielectric properties were investigated in an attempt to tune their temperature coefficient of resonant frequency (τf) to zero. The compositions were sintered to single phase SrLa4Ti5O17 and SrLa4Ti4.5Sn0.5O17 ceramics at x = 0 and x = 0.5, and SrLa4Ti4−xSnxO17 along with a small amount of La2Ti2O7 at x = 1. The major phase observed at x = 2 was La2Ti2O7 but along with SrLa4Ti4SnO17 and SrLa4Ti4O15 as the secondary phases. τf decreased from 117 to 23.0 ppm/°C but at the cost of dielectric constant (εr) and quality factor multiplied by resonant frequency (Qufo) which decreased from 65 to 33.6 and 11150 to 4191 GHz, respectively. The optimum microwave dielectric properties, i.e. τf = 38.6 ppm/°C, εr = 45.5 and Qufo = 7919 GHz, correspond to the SrLa4Ti5−xSnxO17 composition with x = 1.


Author(s):  
Haiquan Wang ◽  
Shixuan Li ◽  
Kangguo Wang ◽  
Xiuli Chen ◽  
Huanfu Zhou

AbstractThis study investigates the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 series ceramics synthesised by solid-state reaction. According to the X-ray diffraction and microstructural analyses, the as-prepared MgO-2B2O3 ceramics possess a single-phase structure with a rod-like morphology. The effects of different quantities of H3BO3 and BaCu(B2O5) (BCB) on the bulk density, sintering behaviour, and microwave dielectric properties of the MgO-2B2O3 ceramics were investigated. Accordingly, the optimal sintering temperature was obtained by adding 30 wt% H3BO3 and 8 wt% BCB. We also reduced the sintering temperature to 825 °C. Furthermore, the addition of 40 wt% H3BO3 and 4 wt% BCB increased the quality factor, permittivity, and temperature coefficient of resonance frequency of MgO-2B2O3 to 44,306 GHz (at 15 GHz), 5.1, and −32 ppm/°C, respectively. These properties make MgO-2B2O3 a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.


2020 ◽  
Author(s):  
Zhou Xu ◽  
Sun Jiajia ◽  
Zhang Ningkang ◽  
Sun Huazhang ◽  
Tao Wenhong ◽  
...  

Abstract Ce2[Zr1-x(Mg1/3Sb2/3)x]3(MoO4)9 (0.02≤x≤0.10) ceramics were prepared well through the traditional solid-state method. A single phase, belonging to the space group of R-3c, was detected by using X-ray diffraction at sintering temperatures ranging from 700 to 850 °C. The crystallization micro-structural of specimens was examined by applying Scanning electron microscopy. The structural refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bonds parameters and microwave dielectric properties were calculated and analyzed by P-V-L theory. Ce2[Zr0.94(Mg1/3Sb2/3)0.06]3(MoO4)9 ceramics with excellent dielectric properties: εr = 10.37, Q×f = 71748 GHz and τf = −13.6 ppm/°C sintered at 725 °C for 6 hours.


1999 ◽  
Vol 14 (9) ◽  
pp. 3567-3570 ◽  
Author(s):  
Ji-Won Choi ◽  
Chong-Yun Kang ◽  
Seok-Jin Yoon ◽  
Hyun-Jai Kim ◽  
Hyung-Jin Jung ◽  
...  

The microwave dielectric properties of Ca[(Li1/3Nb2/3)1−xMx]O3−δ (M = Sn, Ti, 0 ≤ x ≤ 0.5) ceramics were investigated. In general, the ceramics prepared were multiphase materials. However, single-phase specimens having orthorhombic perovskite structure similar to CaTiO3 could be obtained in the vicinity of Sn = 0.2 to 0.3, and Ti = 0.2. As Sn concentration increased, the dielectric constant (εr) decreased and the quality factor (Q) significantly increased within the limited Sn concentration. As Ti concentration increased, the dielectric constant (εr) increased, the quality factor (Q) decreased, and the temperature coefficient of resonant frequency (τf) changed from a negative to positive value. The temperature coefficient of resonant frequency of 0 ppm/°C was realized at Ti = 0.2. The Q · fo value and εr for this composition were found to be 26100 GHz and 38.6, respectively.


2015 ◽  
Vol 33 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Abdul Manan ◽  
Dil Nawaz Khan ◽  
Atta Ullah ◽  
Arbab Safeer Ahmad

AbstractMg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS) of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.


Sign in / Sign up

Export Citation Format

Share Document