scholarly journals A study of nickel and cobalt silicides formed in the Ni/Co/Si(1 0 0) system by thermal annealing

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
C. Sedrati ◽  
A. Bouabellou ◽  
A. Kabir ◽  
R. Haddad ◽  
M. Boudissa ◽  
...  

AbstractIn this work, the Ni/Co/Si system was annealed at temperatures ranging from 300 °C to 800 °C. The samples were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and sheet resistance measurement. The XRD and Raman spectroscopy results showed that the formation of nickel and cobalt silicides (CoSi, Co2Si, Ni2Si, NiSi, NiSi2, CoSi2) is an annealing temperature dependent diffusion process. The diffusion phenomenon was evidenced by RBS. The low values of the sheet resistance which were correlated with the films surface roughness were attributed to the formation of both CoSi and NiSi phases.

2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Guido Scavia ◽  
William Porzio ◽  
Silvia Destri ◽  
Alberto Giacometti Schieroni ◽  
Fabio Bertini

AbstractThe morphology and structure of the overlying poly(3-hexylthiophene) (P3HT) layer onto differently silanized silicon oxide has been studied by Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. By increasing the silanizer alkyl chain length, the layer morphology evolves from a filament like to globular needle like as a consequence of the different SAM organization, while the P3HT conformation remains edge-on. For each case the effect of the annealing temperature has been studied. For all the cases a particular attention has been paid to the first thin layers close to the interface P3HT/SiOx. The effect of a polar substituent and presence of aromatic ring has been also studied.


2012 ◽  
Vol 622-623 ◽  
pp. 919-924 ◽  
Author(s):  
M. Asghar ◽  
Khalid Mahmood ◽  
M. Yasin Raja ◽  
M.A. Hasan

We present the study of the growth of ZnO nanorods on p-Si (100) using MBE. Various characterization techniques such as Fourier transform infra-red (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and capacitance – voltage (C-V) measurements were employed to analyze and assess the grown ZnO nanorods. AFM clearly demonstrated the growth of vertically aligned nanorods, however, they get diffused as the thickness of the layer is increased beyond 1 µm. C-V measurements in particular, justified p-n junction between Si/ZnO nanorods. The junction showed n-type conductivity with carrier concentration 1×1015cm-3. The source of this n-type conductivity was Zn-interstitials and the presence of Zn-interstitials was confirmed by EDAX and Raman spectroscopy. Experimental detail and results were presented that help in furtherance of our understanding of the material issues and its potential as required for the practical devices.


2019 ◽  
Vol 52 (5) ◽  
pp. 951-959
Author(s):  
Jie-Nan Shen ◽  
Yi-Bo Zeng ◽  
Ma-Hui Xu ◽  
Lin-Hui Zhu ◽  
Bao-Lin Liu ◽  
...  

The residual stresses and piezoelectric performance of ZnO thin films under different annealing parameters have been studied by X-ray diffraction and atomic force microscopy (AFM). First, ZnO thin films with a thickness of 800 nm were grown on a Pt/Ti/SiO2/Si substrate by magnetron sputtering. Second, the orthogonal experimental method was selected to study the effects of annealing temperature, annealing time and oxygen content on the residual stresses of the ZnO thin films. The residual stresses of the ZnO thin films were measured by X-ray diffraction and the sin2ψ method. Finally, the three-dimensional topography and piezoelectric performance of the ZnO thin films were measured by AFM. The results showed that the oxygen content during the annealing process has the greatest effect on the residual stress, followed by the annealing temperature and annealing time. A minimum residual stress and optimal piezoelectric performance can be realized by annealing the ZnO thin film in pure oxygen at 723 K for 30 min.


1994 ◽  
Vol 343 ◽  
Author(s):  
M. Gall ◽  
J.G. Pellerin ◽  
P.S. Ho ◽  
K.R. Coffey ◽  
J.K. Howard

ABSTRACTX-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Ag through 250 Å thick Ni80Fe20 (permalloy) films in the temperature range of 375 to 475°C. Grain boundary diffusivities were determined by modeling the accumulation of Ag on Ni80Fe20 surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Ag through Ni80Fe20 is characterized by a diffusion coefficient prefactor, D0,gb, of 0.9 cm2/sec and an activation energy, Ea,gb, of 2.2 eV. The Ni80Fe20 film microstructure has been investigated before and after annealing by atomic force microscopy and x-ray diffraction. The microstructure of Ni80Fe20 deposited on Ag underlayers remained relatively unchanged upon annealing.


2009 ◽  
Vol 24 (1) ◽  
pp. 212-216
Author(s):  
Srinivas Sathiraju ◽  
Paul N. Barnes ◽  
Robert A. Wheeler

We report the systematic substitution of Nb at the Cu1 site of YBa2Cu3Oy in thin films to form a new phase of YBa2Cu2NbO8. These films were deposited on SrTiO3(100) crystals using pulsed laser deposition and deposited at an optimal temperature of 850 °C. Films were characterized using x-ray diffraction (XRD), atomic force microscopy, x-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, and transmission electron microscopy. XRD of these films indicate c-axis oriented YBa2Cu2NbOy formation. XPS and micro-Raman spectroscopy analysis suggests Cu exists in the +2 state.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Sign in / Sign up

Export Citation Format

Share Document