scholarly journals Synthetic alkaline-earth hydroxyapatites: Influence of their structural, textural, and morphological properties over Co2+ ion adsorption capacity

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Francisco Granados-Correa ◽  
Juan Bonifacio-Martínez

Abstract This work addresses the synthesis of nanocrystalline barium, strontium, and calcium hydroxyapatites (Ca-HAps) via the chemical precipitation method, followed by calcination. To give a coherent picture of the most important structural, textural, and morphological properties of these materials and to investigate the influence of these characteristics over Co2+ ion adsorption capacity from aqueous solutions, the powders prepared were systematically characterized by X-ray diffraction, N2-physisorption measurements, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry, and Fourier Transformed Infrared spectroscopy (FTIR). The results clearly showed that the Ca-HAp obtained exhibits better nanocrystallinity, greater structural stability, high surface area, high total pore volume, and mesoporosity, compared with the other synthesized hydroxyapatites, and that these physicochemical properties share a direct correlation with favorable Co2+ ion adsorption capacity at room temperature and pressure. The results proved that the physicochemical features of resulting alkaline-earth hydroxyapatites, prepared via the chemical precipitation method, played a fundamental role during the adsorption of heavy metal (with high toxicity) from aqueous solutions.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Kexin Fang ◽  
Lei Shi ◽  
Lishuang Cui ◽  
Chunwei Shi ◽  
Weiwei Si

A series of CoFe2O4/Bi12O17Cl2 (CFO/Bi12O17Cl2) nanocomposites have been prepared by chemical precipitation method. The result of X-ray diffraction showed that CFO/Bi12O17Cl2 composites had high crystallinity. It was found that CoFe2O4...


2022 ◽  
Author(s):  
Smriti Mukherjee ◽  
Iyyappan E ◽  
Keerthi Satheesh ◽  
Elsa Maria Jordi ◽  
Saranya S ◽  
...  

In the current investigation, HA nanorods and nanoplates with a high surface area have been synthesized using the chemical precipitation method via alcogel formation employing L-arginine as a crystal growth...


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarthe K G ◽  
Kiruthika P

Nanoparticles of Ferric chloride (FeCl3) doped Zinc Sulphide (ZnS) and Undoped Zinc Sulphide (ZnS) had been synthesized successfully by simple chemical precipitation method. Particlesizes have been calculated from X-ray diffraction (XRD) analysis which confirms the nano structure of the samples. The Molecular structure of the compound was determined by theFourier transform infrared spectroscopy (FTIR) analysis and the different vibrational bands confirmed the functional groups present in the sample. The bandwidth of the absorbance isexamined by using (UV)-Visible Spectroscopy. The Morphological structures have been confirmed by using Scanning Electron Microscope (SEM). Energy Dispersive analysis of X-ray (EDAX) shows the composition of elements present in the nanoparticles. The applications of ZnS were used in the field such as Field Emitting Diodes (FET), sensors (gas sensors, biosensors), Flat panel displays, Electroluminescence.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarthe K G ◽  
Sowmiya V

Zinc doped copper oxide nanoparticles were synthesized by chemical precipitation method. Copper acetate is act as a precursor and sodium hydroxide will act as a reducing agent. The prepared nanoparticles were characterized by X-ray diffraction (XRD) which reveals the simple monoclinic structure. The Fourier Transform Infrared Spectroscopy confirms the functional groups present in the nano powders. The morphological Structure of the prepared crystals are analyzed by Scanning Electron Microscopy (SEM) were showed that the products consists of flaky in nature. The Bandwidth of the synthesized sample was calculated by UV- visible spectrum. The presence of compounds in nano powders were confirmed by Energy Dispersive X-ray diffraction (EDAX). Copper oxide has applications as a P-type semiconductor, because it has a narrow band gap of energy of 1.2 e V. Zinc doped copper oxide has applications in the wide variety of fields such as medicine, industries, sunscreens, agriculture etc.


2020 ◽  
Vol 310 ◽  
pp. 1-5
Author(s):  
Marina S. Nikova ◽  
Dmitry S. Vakalov ◽  
Vitaly A. Tarala ◽  
Irina S. Chikulina ◽  
Fedor F. Malyavin ◽  
...  

Synthesis of YSAG:Yb ceramic powders with different stoichiometry by chemical precipitation method was carried out. It has been established that scandium can replace both dodecahedral and octahedral positions of garnet. It is shown that scandium is embedded in those positions that become available to it when the YAG:Yb composition deviates from stoichiometric. Thus, scandium can compensate for the lack of one of the components of the oxide composition Y2O3, Yb2O3, and Al2O3 during the formation of the garnet phase.


Mineralogia ◽  
2017 ◽  
Vol 48 (1-4) ◽  
pp. 107-126 ◽  
Author(s):  
Paulina Maziarz ◽  
Jakub Matusik

Abstract In this study, halloysite-Fe3O4composites were synthesized by a chemical-precipitation method to facilitate magnetic separation of the sorbents from aqueous solution. The research focused on the effect of Fe3O4phase on the halloysite sorption properties. The X-ray diffraction (XRD) results confirmed successful deposition of Fe3O4particles on a halloysite surface. They showed that the coating with Fe3O4particles enhanced the halloysite adsorption affinity toward Cd(II) and Pb(II). The highest adsorption capacity was determined for the composites having 10% of the surface deposited with Fe3O4. In this case, the adsorption capacity for Cd(II) and Pb(II) was 33 and 112 mmol·kg-1, respectively. The point of zero charge (pHPZC) and desorption results indicated that the removal mechanism of metals is mainly related to chemisorption involving reaction with hydroxyls of either halloysite or Fe3O4phase. The ion exchange is of limited importance due to the low cation exchange capacity (CEC) of halloysite - Fe3O4composites.


2020 ◽  
Vol 41 (1) ◽  
pp. 46-50
Author(s):  
Surendra K. Gautam ◽  
Bibek Sapkota ◽  
Arun Bhujel ◽  
Sitaram Bhattarai

Zinc oxide (ZnO) nanoparticles were synthesized by chemical precipitation method using 0.1M and 0.3M [Zn(NO3)2.6H2O] and Na2CO3 solutions. The particle size and band gap of ZnO nanoparticles were estimated and effect of concentration on it was investigated. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The XRD result revealed that synthesized ZnO nanoparticles have pure hexagonal wurtzite structure and the particle size varies from 27.0 nm to 29.9 nm estimated by using Debye-Scherrer’s equation. The TEM image also projected the average particle size in the range of 20-30 nm and selected area electron diffraction (SAED) further verified the formation of hexagonal wurtzite structure. The FTIR result showed a broad absorption band related to Zn-O vibration band. The UV-visible absorption showed a red shift in the absorption edge with increasing concentration of Zn(NO3)2.6H2O solution. The sizes and band gaps of ZnO nanoparticles increased and decreased, respectively with increasing concentration of Zn(NO3)2.6H2O solution from 0.1M to 0.3M.


Sign in / Sign up

Export Citation Format

Share Document