Synthesis and characterization of zinc doped copper oxide nanocrystals by chemical precipitation method

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarthe K G ◽  
Sowmiya V

Zinc doped copper oxide nanoparticles were synthesized by chemical precipitation method. Copper acetate is act as a precursor and sodium hydroxide will act as a reducing agent. The prepared nanoparticles were characterized by X-ray diffraction (XRD) which reveals the simple monoclinic structure. The Fourier Transform Infrared Spectroscopy confirms the functional groups present in the nano powders. The morphological Structure of the prepared crystals are analyzed by Scanning Electron Microscopy (SEM) were showed that the products consists of flaky in nature. The Bandwidth of the synthesized sample was calculated by UV- visible spectrum. The presence of compounds in nano powders were confirmed by Energy Dispersive X-ray diffraction (EDAX). Copper oxide has applications as a P-type semiconductor, because it has a narrow band gap of energy of 1.2 e V. Zinc doped copper oxide has applications in the wide variety of fields such as medicine, industries, sunscreens, agriculture etc.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Kexin Fang ◽  
Lei Shi ◽  
Lishuang Cui ◽  
Chunwei Shi ◽  
Weiwei Si

A series of CoFe2O4/Bi12O17Cl2 (CFO/Bi12O17Cl2) nanocomposites have been prepared by chemical precipitation method. The result of X-ray diffraction showed that CFO/Bi12O17Cl2 composites had high crystallinity. It was found that CoFe2O4...


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Gowthami R ◽  
Nivetha K P

In this present study the non toxic CuS nanoparticles was synthesized by the reaction of copper acetate, thiourea along with the precipitating agent NaoH under chemical precipitation method. The final product CuS nanomaterial was dried at room temperature for better growth of nanoparticles. The size and growth of the crystal depends on the temperature also on the addition of reagent. The resultant nanocrystal were characterized using various techniques like X ray diffraction reveals the particle size, Scanning electron microscope determines the morphology of crystal, Energy dispersive X ray spectroscopy investigate the elemental composition of nanoparticles, U-Visible spectroscopy examine the presence of metallic ion, Fourier transform infrared spectroscopy inspect the existence of functional group. The antibacterial activity of hexagonal structured copper sulphide nanomaterials against gram positive and gramnegative bacteria were also analyzed for their wide applications.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarthe K G ◽  
Kiruthika P

Nanoparticles of Ferric chloride (FeCl3) doped Zinc Sulphide (ZnS) and Undoped Zinc Sulphide (ZnS) had been synthesized successfully by simple chemical precipitation method. Particlesizes have been calculated from X-ray diffraction (XRD) analysis which confirms the nano structure of the samples. The Molecular structure of the compound was determined by theFourier transform infrared spectroscopy (FTIR) analysis and the different vibrational bands confirmed the functional groups present in the sample. The bandwidth of the absorbance isexamined by using (UV)-Visible Spectroscopy. The Morphological structures have been confirmed by using Scanning Electron Microscope (SEM). Energy Dispersive analysis of X-ray (EDAX) shows the composition of elements present in the nanoparticles. The applications of ZnS were used in the field such as Field Emitting Diodes (FET), sensors (gas sensors, biosensors), Flat panel displays, Electroluminescence.


Author(s):  
SHRADDHA SHIRSAT ◽  
DHANASHRI PAWAR ◽  
NISHITA JAIN ◽  
JAYANT PAWAR ◽  
VIDYA S TALE ◽  
...  

Objective: To determine antimicrobial efficacy of copper oxide nanoparticles (CuO NPs) against Streptococcus sp. and Staphylococcus sp. Methods: CuO NPs were synthesized using chemical precipitation method. The reducing agent, 0.1 M NaOH, was used along with 100 mM CuSO4 precursor for the synthesis of CuO NPs. The characterization of CuO NPs was done by ultraviolet-visible spectroscopy and scanning electron microscopy (SEM) to study optical and morphological characteristics, correspondingly. The identification of bacterial cultures was done through microscopic and biochemical studies. Antibacterial efficacy of CuO NPs was determined against Streptococcus sp. and Staphylococcus sp. by qualitative and quantitative methods through anti-well diffusion assay and broth dilution method, respectively. Results: The absorption spectrum and band gap were found to be at 260 nm and 4.77 eV, respectively. The SEM image of CuO NPs shows cluster of nanostructures having width of individual clusters in the range of 100 nm–500 nm. CuO NPs showed inhibition at a concentration ranging from 60 μg/mL to 1000 μg/mL. Conclusion: Finally, CuO NPs can be used as effective antibacterial agent against Streptococcus sp. and Staphylococcus sp. and may have applications in medical microbiology.


2020 ◽  
Vol 310 ◽  
pp. 1-5
Author(s):  
Marina S. Nikova ◽  
Dmitry S. Vakalov ◽  
Vitaly A. Tarala ◽  
Irina S. Chikulina ◽  
Fedor F. Malyavin ◽  
...  

Synthesis of YSAG:Yb ceramic powders with different stoichiometry by chemical precipitation method was carried out. It has been established that scandium can replace both dodecahedral and octahedral positions of garnet. It is shown that scandium is embedded in those positions that become available to it when the YAG:Yb composition deviates from stoichiometric. Thus, scandium can compensate for the lack of one of the components of the oxide composition Y2O3, Yb2O3, and Al2O3 during the formation of the garnet phase.


OALib ◽  
2015 ◽  
Vol 02 (03) ◽  
pp. 1-8 ◽  
Author(s):  
Ismat Zerin Luna ◽  
Lutfun Naher Hilary ◽  
A. M. Sarwaruddin Chowdhury ◽  
M. A. Gafur ◽  
Nuruzzaman Khan ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Hemalatha D ◽  
Shanmugapriya B

Copper oxide nanoparticles were synthesized by Chemical Precipitation Method using Copper Chloride Dihydrate (CuCl2. 2H2O), Sodium hydroxide (NaOH) as a precipitating agent. The Synthesized Copper Oxide nanoparticles were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR). The Antibacterial activity of copper Oxide nanoparticles was tested against both gram positive and negative bacteria. In XRD, the crystal size and dislocation density of Copper Oxide nanoparticles were calculated, Element’s purity was determined by EDX spectra. The SEM image confirms the presence of homogeneous spherical distribution of copper oxide nanoparticles. The nanoparticles shows interactions between copper and oxygen atoms were supported by FTIR studies. Copper Oxide nanoparticles have exhibits good antibacterial activity against Klebsiella pneumonia, Escherichia coli,Staphylococcus, and Bacillus cereus.


2013 ◽  
Vol 12 (05) ◽  
pp. 1350036 ◽  
Author(s):  
KIBRIYA SIDDIQUE ◽  
BHABESH KUMAR NATH ◽  
SANJIB KARMAKAR

We report the synthesis of copper oxide ( CuO ) nanoparticles prepared by wet chemical precipitation method. The structural and dielectric properties are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and complex impedance spectroscopy as a function of frequencies from 40 KHz to 100 KHz in the range of temperatures (308–393K). Maximum value of dielectric constants are found to be in the order of 106 which increases with increase in temperatures. From XRD data it is found that the particle size increases with increase in calcination temperatures. SEM with energy dispersive X-ray fluorescence spectrometer (EDX) results show that only CuO is present in the prepared sample. The selected area electron diffraction (SAED) pattern by TEM shows that uniform size distributions of CuO nanoparticles are present in the sample.


Sign in / Sign up

Export Citation Format

Share Document