scholarly journals Degradation State Identification for Hydraulic Pumps Based on Multi-scale Ternary Dynamic Analysis, NSGA-II and SVM

2021 ◽  
Vol 21 (3) ◽  
pp. 82-92
Author(s):  
Mochao Pei ◽  
Hongru Li ◽  
He Yu

Abstract Degradation state identification for hydraulic pumps is crucial to ensure system performance. As an important step, feature extraction has always been challenging. The non-stationary and non-Gaussian characteristics of the vibration signal are likely to weaken the performance of traditional features. In this paper, an efficient feature extraction algorithm named multi-scale ternary dynamic analysis (MTDA) is proposed. MTDA reconstructs the phase space based on the given signal and converts each embedding vector into a ternary pattern independently, which enhances its capacity of describing the details of non-stationary signals. State entropy (SE) and state transition entropy (STE) are calculated to estimate the dynamical changes and complexity of each signal sample. The excellent performance of SE and STE in detecting frequency changes, amplitude changes, and the development process of fault is verified with the use of four simulated signals. The proposed multi-scale analysis enables them to provide a more precise estimation of entropy. Furthermore, support vector machine (SVM) and nondominated sorting genetic algorithm II (NSGA-II) are introduced to conduct feature selection and state identification. NSGA-II and SVM can conduct the joint optimization of these two goals. The details of the method proposed in this paper are tested using simulated signals and experimental data, and some studies related to the fault diagnosis of rotating machinery are compared with our method. All the results show that our proposed method has better performance, which obtains higher recognition accuracy and lower feature set dimension.


2021 ◽  
pp. 002029402110648
Author(s):  
Mo-chao Pei ◽  
Hong-ru Li ◽  
He Yu

Monitoring the degradation state of hydraulic pumps is of great significance to the safe and stable operation of equipment. As an important step, feature extraction has always been challenging. The non-stationary and nonlinear characteristics of vibration signals are likely to weaken the performance of traditional features. The two-dimensional image representation of vibration signals can provide more information for feature extraction, but it is challenging to obtain sufficient information based on small-size images. To solve these problems, a method for feature extraction based on modified hierarchical decomposition (MHD) and image processing is proposed in this paper. First, a set of signals decomposed by MHD are converted into gray-scale images. Second, features from accelerated segment test (FAST) algorithm are applied to detecting the feature points of the gray-scale image. Third, the real part of Gabor filter bank is used to convolve the images, and the responses of feature points are used to calculate histograms that are regarded as feature vectors. The method for feature extraction fully acquires the multi-layered texture information of small-size images and removes the redundant information. Furthermore, support vector machine (SVM) and nondominated sorting genetic algorithm II (NSGA-II) are introduced to conduct feature selection and state identification. NSGA-II and SVM can conduct the joint optimization of these two goals. The details of the proposed method are validated using experimental data, and the results show that the highest recognition rate of our proposed method can reach 100%. The results of the comparison among the proposed method, local binary pattern (LBP), and one-dimensional ternary patterns (1D-TPs) certify the superiorities of the proposed method. It obtains the highest classification accuracy (99.7%–98%) and the lowest feature set dimension (13–10).



2019 ◽  
Vol 24 (4) ◽  
pp. 749-763
Author(s):  
Guoqing An ◽  
Hongru Li ◽  
Baiyan Chen

Piezoelectric ceramics cracking is one of the main faults of the ultrasonic motor. According to the morphological mathematics and information entropy, a method based on multi-scale morphological gradient was proposed for ceramics fault feature extraction and degradation state identification. To solve the problem that traditional multi-scale morphology spectral (MMS) entropy cannot exactly describe the performance degradation of the piezoelectric ceramics, multi-scale morphology gradient difference (MMGD) entropy was proposed to improve the sensitivity to the fault. Furthermore, multi-scale morphology gradient singular (MMGS) entropy was presented to reduce the system noise interference to the useful fault information. The disturbance analysis of temperature, load, and noise for MMGD entropy and MMGS entropy was also given in this paper. Combining the advantages of the above two entropies, a standard degradation mode matrix was built to distinguish the degradation state via the grey correlation analysis. The analysis of actual test samples demonstrated that this method is feasible and effective to extract the fault feature and indicate the degradation of piezoelectric cracking in ultrasonic motor.



2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Baiyan Chen ◽  
Hongru Li ◽  
He Yu ◽  
Yukui Wang

The vibration signal of the motor bearing has strong nonstationary and nonlinear characteristics, and it is arduous to accurately recognize the degradation state of the motor bearing with traditional single time or frequency domain indexes. A hybrid domain feature extraction method based on distance evaluation technique (DET) is proposed to solve this problem. Firstly, the vibration signal of the motor bearing is decomposed by ensemble empirical mode decomposition (EEMD). The proper intrinsic mode function (IMF) component that is the most sensitive to the degradation of the motor bearing is selected according to the sensitive IMF selection algorithm based on the similarity evaluation. Then the distance evaluation factor of each characteristic parameter is calculated by the DET method. The differential method is used to extract sensitive characteristic parameters which compose the characteristic matrix. And then the extracted degradation characteristic matrix is used as the input of support vector machine (SVM) to identify the degradation state. Finally, It is demonstrated that the proposed hybrid domain feature extraction method has higher recognition accuracy and shorter recognition time by comparative analysis. The positive performance of the method is verified.



2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Guoqing An ◽  
Hongru Li

The cracking of piezoelectric ceramics is the main reason of failure of an ultrasonic motor. Since the fault information is too weak to reflect the condition of piezoelectric ceramics especially in the early degradation stage, a fault feature extraction method based on multiscale morphological spectrum and permutation entropy is proposed. Firstly, a signal retaining the morphological feature under different scales is reconstructed with multiscale morphological spectrum components. Then, the permutation entropy of the reconstructed signal is taken as the fault feature of piezoelectric ceramics. Furthermore, a sensitivity factor is defined to optimize the embedded dimension and delay time of permutation entropy according to double sample Z value analysis. Finally, a matrix composed of the probability distributions, obtained from permutation entropy calculation, is applied for the degradation state identification by means of probability distribution divergence. The analysis of actual test data demonstrates that this method is feasible and effective.



Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.



2019 ◽  
Vol 24 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Guowang Zhou ◽  
Dongdong Li ◽  
Haohan Ren

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs) are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.



2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668308 ◽  
Author(s):  
Shuangyuan Wang ◽  
Yixiang Huang ◽  
Liang Gong ◽  
Lin Li ◽  
Chengliang Liu

Vibration signals reflecting different kinds of machinery conditions are very useful for fault diagnosis. However, vibration signal characteristics are not the same for different types of equipment and patterns of failure. This available information is often lost in structureless condition diagnosis models. We propose a structured Fisher discrimination sparse coding–based fault diagnosis scheme to improve the feature extraction procedure considering both efficiency and effectiveness. There are three major components: (1) a structured dictionary for synthesizing the vibration signals that is learned by structure Fisher discrimination dictionary learning, (2) a tree-structured sparse coding to extract sparse representation coefficients from vibration signals to represent fault features, and (3) a support vector machine’s classifier on the features to recognize different faults. The proposed algorithm is verified on a standard bearing fault data set and a worm gear fault experiment. Test results have proved that the proposed method can achieve better performance with considerable efficiency and generalization ability.



Author(s):  
Long Li ◽  
Jianfeng Xiao ◽  
Bin Wu ◽  
Mengge Zhou ◽  
Qian Wang

The development of power grid system not only increases voltage and capacity, but also increases power risk. This paper briefly introduces the feature extraction method of the vibration signal of high voltage circuit breaker and support vector machine (SVM) algorithm and then analyzed the high voltage circuit breaker in three states: normal operation, fixed screw loosening and falling of opening spring, using the SVM based on the above feature extraction method. The results showed that the accuracy and precision rates of fault identification of circuit breaker were the highest by using the wavelet packet energy entropy extraction features, the false alarm rate was the lowest, and the detection time was the shortest.



Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 152 ◽  
Author(s):  
Nibaldo Rodriguez ◽  
Pablo Alvarez ◽  
Lida Barba ◽  
Guillermo Cabrera-Guerrero

Discriminative feature extraction and rolling element bearing failure diagnostics are very important to ensure the reliability of rotating machines. Therefore, in this paper, we propose multi-scale wavelet Shannon entropy as a discriminative fault feature to improve the diagnosis accuracy of bearing fault under variable work conditions. To compute the multi-scale wavelet entropy, we consider integrating stationary wavelet packet transform with both dispersion (SWPDE) and permutation (SWPPE) entropies. The multi-scale entropy features extracted by our proposed methods are then passed on to the kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. In the end, both the SWPDE–KELM and the SWPPE–KELM methods are evaluated on two bearing vibration signal databases. We compare these two feature extraction methods to a recently proposed method called stationary wavelet packet singular value entropy (SWPSVE). Based on our results, we can say that the diagnosis accuracy obtained by the SWPDE–KELM method is slightly better than the SWPPE–KELM method and they both significantly outperform the SWPSVE–KELM method.



2020 ◽  
Vol 53 (7-8) ◽  
pp. 1078-1087
Author(s):  
Wang Wenbo ◽  
Sun Lin ◽  
Wang Bin ◽  
Yu Min

The recognition of partial discharge mode is an important indicator of the insulation condition in transformers, based on which maintenance can be arranged. Discharge feature extraction is the key to recognize discharge mode. To solve the problem of poor stability and low recognition rate of partial discharge mode, this paper proposes a feature extraction method based on synchrosqueezed windowed Fourier transform and multi-scale dispersion entropy. First, the four partial discharge signals collected under laboratory conditions are decomposed by synchrosqueezed windowed Fourier transform, then a number of band-limited intrinsic mode type functions are obtained, and the original feature quantities of partial discharge signals are obtained by calculating the multi-scale dispersion entropies of each intrinsic mode type function. Based on that, original feature quantity is optimized by using the maximum relevance and minimum redundancy criteria. Finally, the classification is implemented by the support vector machine. Experimental results show that in the case of noise interference, the proposed synchrosqueezed windowed Fourier transform–multi-scale dispersion entropy method can still accurately describe the feature of different discharge signals and has a higher recognition rate than both the empirical mode decomposition–multi-scale dispersion entropy method and the direct multi-scale dispersion entropy method.



Sign in / Sign up

Export Citation Format

Share Document