scholarly journals Soil Fertility Assessment of an High Natural Value Eligible Area in South-Eastern Transylvania

2019 ◽  
Vol 13 (1) ◽  
pp. 57-67
Author(s):  
Monica Dumitrașcu ◽  
Mihaela Lungu ◽  
Sorin Liviu Ștefănescu ◽  
Victoria Mocanu ◽  
Gabi Mirela Matei ◽  
...  

Abstract As low-input environmentally friendly agricultural practices are currently associated with the delivery of a wide range of public goods and socioeconomic benefits, the strategy of European Union in mitigating climate change effects, protecting environment and ensuring public health has, among others, focused around preserving the High Natural Value (HNV) areas. About a quarter of the land in Romania is potentially covered by HNV farming and eligible for associated support payments, mostly along the chain of the Carpathian Mountains. Since soil systematic data on HNV area are scarce, recent research developments currently undertake to build up a first national HNV soil data base. Soil fertility state in a HNV payment eligible area of south-eastern Transylvania was studied in seven in-depth dug profiles and seven additional shallow dug profiles. Soil samples were taken by genetic horizons as well as agrochemical samples from the upper soil layers (0-20 cm). Physical, chemical, and microbiological analyses revealed that the studied soils have a medium clayey loamy texture, good fertility and are subject to an adequate HNV management in the area, as the analytical values mostly range in favorable intervals for plant growth and nutrition. Thus, soil reaction is moderately acid up to slightly alkaline in the presence of carbonates, the soil organic matter, generally well mineralized, reaches fair levels and the high and very high cation exchange capacity ensure good conditions for plants growth and nutrition whilst nitrogen and potassium supply is adequate. Phosphorus is the only element in short supply – a situation often encountered in Romania unfertilized soils. Soil bulk density and total porosity are also favorable for root growth and spreading and plant nutrition. Microorganisms’ activity is diverse and is also adequate for plant nutrition.

2021 ◽  
Vol 13 (20) ◽  
pp. 11354
Author(s):  
Ludmilla Verona C. Gonçalves ◽  
Rachel C. Pinho ◽  
Marta Iria C. Ayres ◽  
Cesar A. Ticona-Benavente ◽  
Henrique dos Santos Pereira ◽  
...  

The management of caiçaras by indigenous peoples in the “Lavrado” (savannas) region of Roraima is a practice that increases soil fertility. Caiçaras are temporary corrals where farmers keep the cattle at night for a certain period, when the soil is enriched by manure addition. In periods when these areas are not used as corrals, they may be planted with different plants species. In addition, areas adjacent to caiçaras may receive manure runoff and also be used for crop production. The study evaluated the changes in soil physical and chemical characteristics resulting from manure supply and runoff in caiçara and adjacent areas and compared these to soil characteristics of nearby unmanaged areas. Soil samples from the three system components were analyzed. The nutrient content added by manure runoff in the plantation adjacent to the caiçara resulted in significant accumulations of organic Ca, Mg, K, P, C, and micronutrients in the soil, without, however, changing pH. Only the soil surface (0–5 cm) showed improvements in soil bulk density and total porosity. This soil management system proves how efficient indigenous farmers can be in integrating their livestock component with the exploitation of available resources to improve soil fertility in areas of low natural fertility, enhancing agricultural production.


2004 ◽  
Vol 47 (5) ◽  
pp. 725-732 ◽  
Author(s):  
José Frederico Centurion ◽  
Amauri Nelson Beutler ◽  
Zigomar Menezes de Souza

The objective of this study was to assess the physical attributes of a kaolinitic oxisol, medium texture (Haplustox) and an oxidic oxisol, clayey (Eutrustox) under different usage systems, localized in the region of Jaboticabal, SP, Brazil. The usage systems were sugarcane, cotton and forest. Parameters such as soil bulk density, total porosity, macro and microporosity at the depths of 0.0-0.1; 0.1-0.2; 0.2-0.3, and 0.3-0.4 m were evaluated. Haplustox showed greater bulk density and smaller total porosity, macro and microporosity. The usage increased the bulk density in 0.0-0.3 m depth, with greater effects on the kaolinitic oxisol, mainly in 0.1-0.2 m depth in the areas cultivated with sugarcane.


2015 ◽  
Vol 39 (4) ◽  
pp. 1036-1047 ◽  
Author(s):  
Cícero Ortigara ◽  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Vanderlei Rodrigues da Silva ◽  
Julio Cezar Franchini ◽  
...  

Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.


2017 ◽  
Vol 284 (1863) ◽  
pp. 20171619 ◽  
Author(s):  
Richard C. Allen ◽  
Jan Engelstädter ◽  
Sebastian Bonhoeffer ◽  
Bruce A. McDonald ◽  
Alex R. Hall

Resistance spreads rapidly in pathogen or pest populations exposed to biocides, such as fungicides and antibiotics, and in many cases new biocides are in short supply. How can resistance be reversed in order to prolong the effectiveness of available treatments? Some key parameters affecting reversion of resistance are well known, such as the fitness cost of resistance. However, the population biological processes that actually cause resistance to persist or decline remain poorly characterized, and consequently our ability to manage reversion of resistance is limited. Where do susceptible genotypes that replace resistant lineages come from? What is the epidemiological scale of reversion? What information do we need to predict the mechanisms or likelihood of reversion? Here, we define some of the population biological processes that can drive reversion, using examples from a wide range of taxa and biocides. These processes differ primarily in the origin of revertant genotypes, but also in their sensitivity to factors such as coselection and compensatory evolution that can alter the rate of reversion, and the likelihood that resistance will re-emerge upon re-exposure to biocides. We therefore argue that discriminating among different types of reversion allows for better prediction of where resistance is most likely to persist.


2021 ◽  
Vol 12 (5) ◽  
pp. 348-360
Author(s):  
Rajendra Hegde ◽  
◽  
Mahendra Kumar ◽  
M. B. Niranjana K. V. ◽  
Seema, K. V. ◽  
...  

An investigation was under taken to study the soil fertility status of major nutrients, micronutrients and mapping in Ramasamudram-1 microwatershed of Yadgir taluk and district of Karnataka, India during the year 2019. Total seventy-four grid wise surface soil samples were collected at 320 m grid interval at 0-15 cm depth to assess the soil parameters (texture, pH, EC, OC, available P, K, S, Zn, Cu, Fe, Mn and B) and prepare the soil fertility maps through GIS using Kriging method. The results of the study indicated that, the texture of the soil varied from loamy sand to sand clay loam in surface. Soil reaction varied from acidic to neutral with non-saline in nature. The distribution of soil organic carbon (32%), available phosphorous (56%) and potassium (47%) status was found to be medium in most of the area of microwatershed. The available sulphur status was found to be low (57%) in maximum area of the microwatershed. The available zinc status was found to be sufficient (46%) in majority area of the microwatershed. The available copper, iron and manganese status of the soils were sufficient (58%) in entire area. Whereas available boron status was found to be low (57%) in maximum area of the microwatershed. Therefore, the study showed that, the soils of the microwatershed were medium in fertility status. There is need of proper fertilizer recommendation and soil management practices can be made productive thereby, increasing the crop yield.


2003 ◽  
Vol 40 (1) ◽  
pp. 127-138 ◽  
Author(s):  
D. J. NIXON ◽  
L. P. SIMMONDS

There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha−1 under continuous sugarcane to 141–144 t ha−1 after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m−2 under continuous sugarcane to 5.2–6.8 km m−2 after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11 % under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h−1 to 1.34 mm h−1, but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.


Sign in / Sign up

Export Citation Format

Share Document