scholarly journals Numerical Investigation of the Hydrodynamic Performance of the Propeller Behind the Ship with and Without Wed

2020 ◽  
Vol 27 (4) ◽  
pp. 50-59
Author(s):  
Alireza Nadery ◽  
Hassan Ghassemi

AbstractThe presented paper numerically carries out the investigation of the hydrodynamic performance of the propeller behind the ship with and without wake equalizing duct (WED). It is mounted in front of the propeller in order to equalize the ship’s wake flow and improve the propeller performance. The computational fluid dynamics (CFD) analysis software STAR-CCM solver was adopted to simulate the KP505 propeller behind the KRISO container ship (KCS) using overlapping grid technology and user-defined functions. To obtain the effect of a –duct on propeller performance, the ship bare hull case, the with-propeller case, and the with-propeller-and-duct case are also computed. Together, these computations provide for a –complete CFD comparison of the duct effects. Also, the Taguchi design of the experiment method is applied to investigate three parameters (angle of attack, trailing edge radius, and chord length) of the duct. Finally, the main dimensions are obtained, and the thrust and torque coefficients are presented and discussed for one blade and whole blades during one cycle. Based on the numerical results, it is indicated that good design increases efficiency by 1.67%, and a –bad design may reduce efficiency by 3.25%. Also, the effect of the WED caused to decrease the pressure pulse by 35.9% in the face side of the propeller blade.

Author(s):  
Hasan Sajedi ◽  
Miralam Mahdi

Marine propeller always operates in the wake of a vehicle (ship, torpedo, submarine) but (due to the high computational cost of simulating vehicle and propeller simultaneously) to investigate the propeller geometric parameters, simulations are usually performed in open-water conditions. In this article, using the computational fluid dynamics method with the control volume approach, the effect of the rake angle on the propeller performance and formation of cavitation in the uniform flow (open water) and the nonuniform flow (wake flow) was investigated. In the nonuniform condition, the array of plates was used to simulate wake at upstream propeller. For uniform flow, steady solution scheme was adopted and for nonuniform flow unsteady solution scheme was adopted, and a moving mesh zone was generated around the propeller. To simulate cavitation a multiphase mixture flow, the Reynolds-averaged Navier–Stokes method was used and modeled by Schnerr Sauer's cavitation model. First, the E779a propeller model for numerical validation in the uniform flow and nonuniform flow was investigated. Numerical results were compared with the experimental result, and there was a good agreement between volume of the cavity, thrust, and torque coefficients. To study the effect of rake angle on the performance of B-series propellers, four models with different rake angles were modeled, and simulation was investigated behind the wake. The results of thrust, torque coefficients, and cavitation volume according to the flow parameters and cavitation number were presented as graphs. The results reveals that in the uniform flow, the rake angle has no significant effect on the propeller performance, but behind the wake flow, increase of rake causes to reduce the force applied to the propeller blades, cavitation volume, and pressure fluctuations on the propeller.


1994 ◽  
Vol 116 (3) ◽  
pp. 185-189 ◽  
Author(s):  
D. Walker ◽  
N. Bose ◽  
H. Yamaguchi

Experiments were done on a 200-mm-dia open propeller behind a simulated ice blockage in a cavitation tunnel. The propeller performance in uniform flow and blocked flow is contrasted over a range of advance coefficients and at different cavitation numbers. Mean thrust and torque coefficients are presented. The types of cavitation, and its intermittent nature over a cycle of operation, are reported. The experiments indicate the likelihood of cavitation at full scale for blocked conditions and illustrate the effects of cavitation on mean values of thrust and torque.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Chun-Yu Guo ◽  
Pei Xu ◽  
Chao Wang ◽  
Wei-Peng Xiong

This experimental study investigates the influence of different sizes, quantities, and axial positions of model ice on propeller hydrodynamic performance. We used particle image velocimetry measurements to analyze the characteristics of the propeller wake flow field. The measurement results show that ice blockage leads to an increase in propeller thrust, torque, and efficiency. The smaller the advance coefficient of the propeller is, the smaller the influence of model ice on propeller blockage is. As the model ice becomes thicker and the thrust and efficiency of the propeller increase, the propeller torque is smaller for low advance coefficient and higher for high advance coefficient. The wider the model ice is, the larger the thrust and torque of the propeller are. Once the model ice width exceeds the propeller diameter, the change in its width has no effect on propeller efficiency. When the propeller is blocked with model ice, the fluid velocity in the wake flow reduces in the inflow direction, and the increase in fluid velocity in the horizontal transverse direction and variation of fluid velocity in the vertical direction are related to the model ice width.


Author(s):  
Daniel G. Taborda ◽  
Jorge Sierra-Del Rio ◽  
Juan Diego Perez-Alvarez ◽  
Arley Cardona-Vargas ◽  
Daniel Sanin Villa

Fossil fuels are energy sources that supply a large part of the world's energy generation. However, they produce greenhouse gases such as carbon dioxide (CO2), nitrogen oxide (NOx) and particulates that increase global warming. For this reason, other forms of renewable energy such as hydropower have begun to be implemented through turbomachinery such as Pelton turbines, which significantly reduce these emissions since they are highly efficient turbines based on the use of natural resources (water). Pelton turbines are based mainly on three components for their operation, which are the Pelton injector, the bucket and the wheel. The injector is an important component in the energy transformation of Pelton turbines. Although to analyze its behavior, it is possible to use fluid dynamics (CFD) software to predict the trajectory of the flow through a solid or free surface. The objective of this work is to analyze by means of computational fluid dynamics (CFD) the incidence of the length and the needle tip angle of a Pelton turbine injector on the generated power. For this, an ANSYS 2020R2 computational fluid analysis software was used to study how the variation of the injector needle tip angle influences through the volume of fluid (VOF) method, starting from the generation of a commercial model with a tip angle of 60° and two (2) geometries of 55° and 75° respectively. Numerical results show a better performance for the 75° angle of 96 % and lower for the 55° and 60° with 94.1 % and 95.5 % respectively, whereby steeper angles achieve higher performances. In summary, the present study pretends to increase the power generation, in the face of phenomena occurred in the energy transfer. Although the performance of the injector in each angle configuration must be tested in practice


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


2021 ◽  
pp. 174702182199299
Author(s):  
Mohamad El Haj ◽  
Emin Altintas ◽  
Ahmed A Moustafa ◽  
Abdel Halim Boudoukha

Future thinking, which is the ability to project oneself forward in time to pre-experience an event, is intimately associated with emotions. We investigated whether emotional future thinking can activate emotional facial expressions. We invited 43 participants to imagine future scenarios, cued by the words “happy,” “sad,” and “city.” Future thinking was video recorded and analysed with a facial analysis software to classify whether facial expressions (i.e., happy, sad, angry, surprised, scared, disgusted, and neutral facial expression) of participants were neutral or emotional. Analysis demonstrated higher levels of happy facial expressions during future thinking cued by the word “happy” than “sad” or “city.” In contrast, higher levels of sad facial expressions were observed during future thinking cued by the word “sad” than “happy” or “city.” Higher levels of neutral facial expressions were observed during future thinking cued by the word “city” than “happy” or “sad.” In the three conditions, the neutral facial expressions were high compared with happy and sad facial expressions. Together, emotional future thinking, at least for future scenarios cued by “happy” and “sad,” seems to trigger the corresponding facial expression. Our study provides an original physiological window into the subjective emotional experience during future thinking.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Richard B. Medvitz ◽  
Varun Reddy ◽  
Steve Deutsch ◽  
Keefe B. Manning ◽  
Eric G. Paterson

Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.


1989 ◽  
Vol 26 (03) ◽  
pp. 192-201 ◽  
Author(s):  
Neil Bose ◽  
Peter S. K. Lai

Open-water experiments were done on a model of a cycloidal-type propeller with a trochoidal blade motion. This propeller had three blades with an aspect ratio of 10. These experiments included the measurement of thrust and torque of the propeller over a range of advance ratios. Tests were done for forward and reverse operation, and at zero speed (the bollard pull condition). Results from these tests are presented and compared with: a multiple stream-tube theoretical prediction of the performance of the propeller; and a prediction of the performance of a single blade of the propeller, oscillating in heave and pitch, using unsteady small-amplitude hydrofoil theory with corrections for finite amplitude motion, finite span, and frictional drag. At present, neither of these theories gives a completely accurate prediction of propeller performance over the whole range of advance ratios, but a combination of these approaches, with an allowance for dynamic stall of the blades, should lead to a reliable simple theory for overall performance prediction. Application of a propeller of this type to a small ship is discussed. The aim of the design is to produce a lightly loaded propeller with a high efficiency of propulsion.


The current article dispenses the numerical investigation of a two dimensional unsteady laminar flow of incompressible fluid passing a regular pentagonal obstacle in an open rectangular channel. The centre of attention of this work is the comparison of drag coefficients estimated for two distinct cases based on the orientation of face and corner of an obstacle against the flow direction. The numerical results shows that the corner – oriented obstacle bring about 42% larger value of drag coefficient at Re = 500 than face – oriented obstacle. The substantial growth in the expanse of vortex behind obstacle (presented as a function of fluid inertia 25 < Re < 500) is analyzed through the contours and streamline patterns of velocity field. The two eddies in the downstream become entirely unsymmetrical at Re = 500 for both the cases, whereas; the flow separation phenomena occurs a bit earlier in the face – oriented case at Re = 250. Two dimensional Pressure – Based – Segregated solver is employed to model the governing equations written in velocity and pressure fields. The numerical simulations of unsteady flow are presented for 50 seconds time frame with time step 0.01 by using one of the best available commercial based Computational Fluid Dynamics (CFD) software, ANSYS 15.0.


2015 ◽  
Author(s):  
Dmitry V. Nikushchenko ◽  
Anastasia A. Zubova

Provided within current research extensive numerical and theoretical investigations include real maneuvering condition cases when ship-to-ship interaction phenomena play a significant role. General methodology for hydrodynamic forces and moments’ results analysis and further application within the mathematical model of marine simulators is implemented. Real conditions cases include: ship wake flow interaction with the overtaking ship; interaction between ships; speeds and transverse distance variations. Numerical investigations are carried out with the use of Computational Fluid Dynamics (CFD) methods; analysis of numerical models is completed based on the CFD codes used widely. A significant part of research is devoted to the turbulence modeling focused on flow specifics.


Sign in / Sign up

Export Citation Format

Share Document