scholarly journals Evaluation of the Environmental Sustainability of Hemp as a Building Material, through Life Cycle Assessment

2021 ◽  
Vol 25 (1) ◽  
pp. 1215-1228
Author(s):  
Salvatore Emanuele Di Capua ◽  
Luisa Paolotti ◽  
Elisa Moretti ◽  
Lucia Rocchi ◽  
Antonio Boggia

Abstract Environmental issues, especially those related to the over-exploitation of natural resources, are leading towards considering alternative solutions and new approaches, such as the circular economy. Currently, some key elements of the circular economy approach are sustainable procurement of raw materials, improvement of production processes and ecological design, adoption of more sustainable distribution and consumption models, development of secondary raw material markets. This work aims to analyse the use of hemp as a building material, replacing traditional construction materials, but respecting at the same time the thermal, insulating and acoustic characteristics required in the construction of a building. The methodology used was Life Cycle Assessment (LCA), which considered the hemp cultivation phase and the production phase of hemp-lime (“hempcrete”) walls. The hempcrete product was compared with two different solutions: a hemp and lime block, and a traditional perforated brick block with external insulation in polystyrene. In particular, the differences among the products in terms of embodied energy and net CO2 emissions were analysed. Results showed that the hempcrete wall had better environmental performances than the other two solutions.

2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


2021 ◽  
Vol 232 ◽  
pp. 110651
Author(s):  
Elena G. Dascalaki ◽  
Poulia Argiropoulou ◽  
Constantinos A. Balaras ◽  
Kalliopi G. Droutsa ◽  
Simon Kontoyiannidis

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2746
Author(s):  
Guadalupe Pérez ◽  
Jorge M. Islas-Samperio

Using information from an experimental planting of non-toxic Jatropha curcas (NTJC) with minimal water and fertilization resources on rural marginal soil the objective of this article is to determine the sustainability of this raw material for producing biodiesel and the possibilities for improving it through life-cycle assessment (LCA). Three production scenarios were studied: minimal resources (MR), which focuses on the obtaining of biodiesel; minimal resources and utilization of sub-products (MRUS), which includes the utilization of the residual products in order to produce food and solid biofuels, as well as biodiesel; and utilization of biofertilizers, flood irrigation, and sub-products (UBIS), which incorporates the use of bio-fertilizers and irrigation in the production system. This study includes the selection of six sustainability indicators, as well as indicators by means of LCA methodology Finally, a sustainability index (SI) for each scenario was determined on the basis of an index of environmental sustainability of energy products (IESEP). Our results indicated that the MR scenario yielded the lowest SI 0.673, while the MRUS scenario had the highest SI 0.956. It concludes that sustainability is greater when it utilizes minimal water and fertilization resources during the raw material production stage, and the residual products are used for food and energy products made possible by the non-toxic properties of Jatropha curcas.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cagla Keles ◽  
Fatih Yazicioglu

PurposeThe purpose of this paper is to identify the sustainability conditions of primary schools in Turkey within the scope of the life cycle assessment (LCA). It is aimed to develop optimum alternatives to reduce the environmental impact of primary schools and reach environmental sustainability targets of the sustainable development goals in Turkey.Design/methodology/approachFrom the construction project of 103 buildings located in Istanbul, 10 case buildings with various typical plans were chosen for analysis. The results regarding their life cycle energy and carbon emission for material production, operation and maintenance stages were calculated for a lifespan of 50 years. Results were evaluated and compared within the scope of environmental sustainability. Optimum alternatives for improving the environmental sustainability and performances of selected case buildings’ facades were developed, and the life cycle energy and carbon emission for proposed conditions were calculated. The obtained results were evaluated for current and proposed conditions.FindingsResults showed that reinforced concrete material contributes the most to the life cycle-embodied energy and CO2 emission of buildings. Cooling load increases the life cycle operational energy (LCOE) and CO2 emission of buildings. Using high-performance glazing significantly reduces LCOE and CO2 emission. Recycled and fiber-based materials have significant potential for reducing life cycle-embodied energy and CO2 emission.Originality/valueThis study has been developed in response to achieving sustainable development targets on public buildings in Turkey. In this regard, external walls of primary schools were analyzed within the scope of LCA and recommendations were made to contribute to the policies and regulations requested by the Government of Turkey. This study proves that alternative and novel materials have great potential for achieving sustainable public buildings. The study answers to questions about reducing the environmental impact of primary school buildings by using LCA approach with a holistic point of view.


Author(s):  
Lucia Rigamonti ◽  
Eliana Mancini

Abstract Purpose In a context where the transition to a circular economy is increasingly required, it is necessary to clarify the relationship between sustainability and circularity. In this commentary we summarise what are circularity indicators and what is LCA (Life Cycle Assessment), and we discuss their potential role in improving circular decision making. Methods Based on literature, a focus on how circularity indicators and LCA could be used in circular decision making is presented. Moreover, an analysis of recent studies has been carried out to identify the relationship between LCA and circularity indicators. Results and discussion We can state that no authors have concluded that circularity indicators can be used alone to choose the best option in circular economy projects. This is because the circularity indicators only provide a partial view on the environmental performance of a system. At the same time, it appears that the circularity indicators are easier to communicate, and a high degree of circularity could help to build good relationships with customers and increase reputation among stakeholders, as well as to have an easier access to funding. Conclusions and recommendations At the end, we propose a procedure to include both the LCA and the circularity measurement in the assessment of circular economy strategies. While still at an early stage of conceptualisation, it gives an idea on how to integrate environmental sustainability aspects into circular economy initiatives.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


Author(s):  
Liangliang Jia ◽  
Jie Chu ◽  
Li Ma ◽  
Xuemin Qi ◽  
Anuj Kumar

Life cycle assessment (LCA) has been an important issue in the development of a circular economy. LCA is used to identify environmental impacts and hotspots associated with plywood manufacturing. Based on our results and a literature review of LCA studies involving plywood, a sustainable and environmentally friendly scenario was proposed for the plywood processing industry to improve environmental performance and sustainability. This study covers the life cycle of plywood production from a cradle-to-gate perspective, including raw material preparation and plywood manufacturing and processing to analysis of environment impacts and hotspots. Analysis of abiotic depletion (ADP), acidification effect (AP), primary energy depletion (PED), freshwater eutrophication (EP), global warming potential (GWP), and particulate matter (RI) were selected as major impact categories in this study. All data were obtained from on-site measurements (plywood production) and investigations of the Eco-invent database and CLCD database (upstream data of materials and energy). These data can be ignored when environmental contributions comprise less than 0.001% of environmental impact and auxiliary material quality is less than 0.01% of total raw material consumption. An eco-design strategy with eco-alternatives was proposed: pyrolysis bio-oil can be used to produce green resin to replace traditional phenolic formaldehyde (PF) resin to decrease the impacts of GWP, PED, AP, PM, and especially ADP and EP. A new technology of gluing green wood was used to replace conventional plywood production technology; wood waste could undergo a gasification process to produce resultant gas rather than combusting. Plywood was also compared with other wood-based panels in China to identify additional scenarios to improve environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document