scholarly journals Life cycle assessment and circularity indicators

Author(s):  
Lucia Rigamonti ◽  
Eliana Mancini

Abstract Purpose In a context where the transition to a circular economy is increasingly required, it is necessary to clarify the relationship between sustainability and circularity. In this commentary we summarise what are circularity indicators and what is LCA (Life Cycle Assessment), and we discuss their potential role in improving circular decision making. Methods Based on literature, a focus on how circularity indicators and LCA could be used in circular decision making is presented. Moreover, an analysis of recent studies has been carried out to identify the relationship between LCA and circularity indicators. Results and discussion We can state that no authors have concluded that circularity indicators can be used alone to choose the best option in circular economy projects. This is because the circularity indicators only provide a partial view on the environmental performance of a system. At the same time, it appears that the circularity indicators are easier to communicate, and a high degree of circularity could help to build good relationships with customers and increase reputation among stakeholders, as well as to have an easier access to funding. Conclusions and recommendations At the end, we propose a procedure to include both the LCA and the circularity measurement in the assessment of circular economy strategies. While still at an early stage of conceptualisation, it gives an idea on how to integrate environmental sustainability aspects into circular economy initiatives.

2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


2021 ◽  
Vol 25 (1) ◽  
pp. 1215-1228
Author(s):  
Salvatore Emanuele Di Capua ◽  
Luisa Paolotti ◽  
Elisa Moretti ◽  
Lucia Rocchi ◽  
Antonio Boggia

Abstract Environmental issues, especially those related to the over-exploitation of natural resources, are leading towards considering alternative solutions and new approaches, such as the circular economy. Currently, some key elements of the circular economy approach are sustainable procurement of raw materials, improvement of production processes and ecological design, adoption of more sustainable distribution and consumption models, development of secondary raw material markets. This work aims to analyse the use of hemp as a building material, replacing traditional construction materials, but respecting at the same time the thermal, insulating and acoustic characteristics required in the construction of a building. The methodology used was Life Cycle Assessment (LCA), which considered the hemp cultivation phase and the production phase of hemp-lime (“hempcrete”) walls. The hempcrete product was compared with two different solutions: a hemp and lime block, and a traditional perforated brick block with external insulation in polystyrene. In particular, the differences among the products in terms of embodied energy and net CO2 emissions were analysed. Results showed that the hempcrete wall had better environmental performances than the other two solutions.


Author(s):  
Vanesa G. Lo Iacono Ferreira ◽  
Juan Ignacio Torregrosa López

A Life Cycle Sustainability Analysis is a complex assessment that requires time, expertise and quality data. Decision-making boards of industries required live data to manage their business. Although planned changes can be made pursuing innovation and sustainability within a wide timeframe, daily decisions are often driven just by economic indicators. However, many industries are already implementing systems, simple or complex, that allows them to obtain some environmental or social information related to their activities aware that not only economic value foster ther circular economy that our planet needs. Key performance indicators are excellent information suppliers that can be define either in the economic, social or environmental area of a sustainable analysis. Willing to develop a methodology easy to apply in existing decision-making panels that incorporates social and environmental indicators to fill the gap of a sustianibility analisys, this research group is exploring new protocols and procedures to define customized key performance indicators. The inclusion of key performance indicators based in Life Cycle Assessment in existing management panels will serve as a tool to make the commitment of our European industries with circular economy come true.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1229
Author(s):  
Alberto Di Bartolo ◽  
Giulia Infurna ◽  
Nadka Tzankova Dintcheva

The European Union is working towards the 2050 net-zero emissions goal and tackling the ever-growing environmental and sustainability crisis by implementing the European Green Deal. The shift towards a more sustainable society is intertwined with the production, use, and disposal of plastic in the European economy. Emissions generated by plastic production, plastic waste, littering and leakage in nature, insufficient recycling, are some of the issues addressed by the European Commission. Adoption of bioplastics–plastics that are biodegradable, bio-based, or both–is under assessment as one way to decouple society from the use of fossil resources, and to mitigate specific environmental risks related to plastic waste. In this work, we aim at reviewing the field of bioplastics, including standards and life cycle assessment studies, and discuss some of the challenges that can be currently identified with the adoption of these materials.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2021 ◽  
Vol 13 (5) ◽  
pp. 2472
Author(s):  
Teodora Stillitano ◽  
Emanuele Spada ◽  
Nathalie Iofrida ◽  
Giacomo Falcone ◽  
Anna Irene De Luca

This study aims at providing a systematic and critical review on the state of the art of life cycle applications from the circular economy point of view. In particular, the main objective is to understand how researchers adopt life cycle approaches for the measurement of the empirical circular pathways of agri-food systems along with the overall lifespan. To perform the literature review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was considered to conduct a review by qualitative synthesis. Specifically, an evaluation matrix has been set up to gather and synthesize research evidence, by classifying papers according to several integrated criteria. The literature search was carried out employing scientific databases. The findings highlight that 52 case studies out of 84 (62% of the total) use stand-alone life cycle assessment (LCA) to evaluate the benefits/impacts of circular economy (CE) strategies. In contrast, only eight studies (9.5%) deal with the life cycle costing (LCC) approach combined with other analyses while no paper deals with the social life cycle assessment (S-LCA) methodology. Global warming potential, eutrophication (for marine, freshwater, and terrestrial ecosystems), human toxicity, and ecotoxicity results are the most common LCA indicators applied. Only a few articles deal with the CE assessment through specific indicators. We argue that experts in life cycle methodologies must strive to adopt some key elements to ensure that the results obtained fit perfectly with the measurements of circularity and that these can even be largely based on a common basis.


Sign in / Sign up

Export Citation Format

Share Document