scholarly journals Directed flow from global symmetry and initial state Fluctuations

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Laszlo Csernai ◽  
Astrid Skålvik ◽  
D. Wang ◽  
Daniel Strottman ◽  
Csaba Anderlik ◽  
...  

AbstractCollective flow is studied in a 3+1D fluid dynamical model with globally symmetric, peripheral initial conditions, taking into account the shear flow. At $\sqrt {s_{NN} } $ = 2.76 TeV in semi-peripheral Pb+Pb collisions this leads to rotation, while at more peripheral collisions with high resolution and low numerical viscosity, the initial development of a Kelvin-Helmholz instability is observed. This effect provides a precision tool for studying the viscosity of Quark-Gluon Plasma.

2018 ◽  
Vol 172 ◽  
pp. 05005
Author(s):  
Sandra S. Padula

The quark-gluon plasma created in high energy collisions of large nuclei exhibits strong anisotropic collective behavior as a nearly perfect fluid, flowing with little frictional resistance or viscosity. It has been investigated extensively over the past years employing two or more particle correlations. An overview of collective flow and particle correlation measurements at CMS as a function of transverse momentum, pseudorapidity, event multiplicity, for both charged hadrons or identified particles will be presented. These results are compared among pp, pPb and PbPb systems and several aspects of their intriguing similarities are discussed.


2018 ◽  
Vol 171 ◽  
pp. 04003
Author(s):  
Marlene Nahrgang ◽  
Jörg Aichelin ◽  
Pol Bernard Gossiaux ◽  
Klaus Werner

In this talk we will discuss the recent advances in describing heavy-quark dynamics in the quark-gluon plasma (QGP), which evolves hydrodynamically. Special emphasis is put on the collective flow of the heavy-quarks with the medium constituents, for which we present our latest results obtained within the MC@sHQ+EPOS2 model at √s = 5 TeV.


2014 ◽  
Vol 931 ◽  
pp. 975-980
Author(s):  
Jussi Auvinen ◽  
Jan Steinheimer ◽  
Hannah Petersen

2018 ◽  
Vol 171 ◽  
pp. 17002
Author(s):  
Redmer Alexander Bertens

Anisotropic flow is sensitive to the shear (η/s) and bulk (ζ/s) viscosity of the quark-gluon plasma created in heavy-ion collisions, as well as the initial state of such collisions and hadronization mechanisms. In these proceedings, elliptic (υ2) and higher harmonic (υ3, υ4) flow coefficients of π±, K±, p(p) and the ϕ-meson, are presented for Pb—Pb collisions at the highest-ever center-of-mass energy of [see formula in PDF] = 5.02 TeV. Comparisons to hydrodynamic calculations (IP-Glasma, MUSIC, UrQMD) are shown to constrain the initial conditions and viscosity of the medium.


2022 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Stéphane Delorme ◽  
Thierry Gousset ◽  
Roland Katz ◽  
Pol-Bernard Gossiaux

We investigate the real-time dynamics of a correlated heavy quarkantiquark pair inside the Quark-Gluon Plasma using new quantum master equations derived from first QCD principles and based on the work of Blaizot & Escobedo [4]. The full equations are directly numerically solved in one-dimension to reduce computing costs and is used to gain insight on the dynamics in both a static and evolving medium following a Björken-like temperature evolution. The effect of the initial state on the dynamics is also studied.


2013 ◽  
Vol 28 (01) ◽  
pp. 1330001 ◽  
Author(s):  
FRANÇOIS GELIS

We review the color glass condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the glasma phase, that precedes the formation of an equilibrated quark–gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark–gluon plasma.


2020 ◽  
Vol 235 ◽  
pp. 02006
Author(s):  
Thomas A. Trainor

The journal Nature recently published a letter titled "Creating small circular, elliptical, and triangular droplets of quark-gluon plasma" [1]. The basis for that claim is a combination of measured Fourier amplitudes v2 and v3 from collision systems p-Au, d-Au and h-Au (helion h is the nucleus of atom 3He), Glauber Monte Carlo estimates of initial-state transverse collision geometries for those systems and hydrodynamic Monte Carlo descriptions of the vn data. Apparent correspondence between hydrodynamic model vn trends and data trends is interpreted as confirmation of “collectivity” occurring in the small collision systems, further interpreted to indicate QGP formation. QGP formation in small systems runs counter to pre-RHIC theoretical assumptions that QGP formation should require large collision systems (e.g. central A-A collisions). There is currently available a broad context of experimental data from p-p, A-A and p-Pb collisions at the RHIC and LHC against which the validity of the Nature letter claims may be evaluated. This talk provides a summary of such results and their implications. [1] Nature Phys. 15, no. 3, 214 (2019).


Sign in / Sign up

Export Citation Format

Share Document