scholarly journals A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems

Author(s):  
Qunliang Li ◽  
Qiwei Liu ◽  
Haibo Cai ◽  
Wen-Song Tan

AbstractStatic and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.

Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2037-2044 ◽  
Author(s):  
Ulrich Steidl ◽  
Ralf Kronenwett ◽  
Ulrich-Peter Rohr ◽  
Roland Fenk ◽  
Slawomir Kliszewski ◽  
...  

Abstract CD34+ hematopoietic stem cells are used clinically to support cytotoxic therapy, and recent studies raised hope that they could even serve as a cellular source for nonhematopoietic tissue engineering. Here, we examined in 18 volunteers the gene expressions of 1185 genes in highly enriched bone marrow CD34+(BM-CD34+) or granulocyte–colony-stimulating factor–mobilized peripheral blood CD34+(PB-CD34+) cells by means of cDNA array technology to identify molecular causes underlying the functional differences between circulating and sedentary hematopoietic stem and progenitor cells. In total, 65 genes were significantly differentially expressed. Greater cell cycle and DNA synthesis activity of BM-CD34+ than PB-CD34+ cells were reflected by the 2- to 5-fold higher expression of 9 genes involved in cell cycle progression, 11 genes regulating DNA synthesis, and cell cycle–initiating transcription factor E2F-1. Conversely, 9 other transcription factors, including the differentiation blocking GATA2 and N-myc, were expressed 2 to 3 times higher in PB-CD34+ cells than in BM-CD34+cells. Expression of 5 apoptosis driving genes was also 2 to 3 times greater in PB-CD34+ cells, reflecting a higher apoptotic activity. In summary, our study provides a gene expression profile of primary human CD34+ hematopoietic cells of the blood and marrow. Our data molecularly confirm and explain the finding that CD34+ cells residing in the bone marrow cycle more rapidly, whereas circulating CD34+ cells consist of a higher number of quiescent stem and progenitor cells. Moreover, our data provide novel molecular insight into stem cell physiology.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 811
Author(s):  
Pranav Oberoi ◽  
Kathrina Kamenjarin ◽  
Jose Francisco Villena Ossa ◽  
Barbara Uherek ◽  
Halvard Bönig ◽  
...  

Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2581-2581
Author(s):  
Hong Qian ◽  
Mikael Sigvardsson

Abstract Abstract 2581 The bone marrow (BM) microenvironment consists of a heterogeneous population including mesenchymal stem cells and as well as more differentiated cells like osteoblast and adipocytes. These cells are believed to be crucial regulators of hematopoetic cell development, however, so far, their identity and specific functions has not been well defined. We have by using Ebf2 reporter transgenic Tg(Ebf2-Gfp) mice found that CD45−TER119−EBF2+ cells are selectively expressed in non-hematopoietic cells in mouse BM and highly enriched with MSCs whereas the EBF2− stromal cells are very heterogenous (Qian, et al., manuscript, 2010). In the present study, we have subfractionated the EBF2− stromal cells by fluorescent activated cell sorter (FACS) using CD44. On contrary to previous findings on cultured MSCs, we found that the freshly isolated CD45−TER119−EBF2+ MSCs were absent for CD44 whereas around 40% of the CD45−TER119−EBF2− cells express CD44. Colony forming unit-fibroblast (CFU-F) assay revealed that among the CD45−LIN−EBF2− cells, CD44− cells contained generated 20-fold more CFU-Fs (1/140) than the CD44+ cells. The EBF2−CD44− cells could be grown sustainably in vitro while the CD44+ cells could not, suggesting that Cd44− cells represents a more primitive cell population. In agreement with this, global gene expression analysis revealed that the CD44− cells, but not in the CD44+ cells expressed a set of genes including connective tissue growth factor (Ctgf), collagen type I (Col1a1), NOV and Runx2 and Necdin(Ndn) known to mark MSCs (Djouad et al., 2007) (Tanabe et al., 2008). Furthermore, microarray data and Q-PCR analysis from two independent experiments revealed a dramatic downregulation of cell cycle genes including Cdc6, Cdca7,-8 and Ki67, Cdk4-6) and up-regulation of Cdkis such as p57 and p21 in the EBF2−CD44− cells, compared to the CD44+ cells indicating a relatively quiescent state of the CD44− cells ex vivo. This was confirmed by FACS analysis of KI67 staining. Furthermore, our microarray analysis suggested high expression of a set of hematopoietic growth factors and cytokines genes including Angiopoietin like 1, Kit ligand, Cxcl12 and Jag-1 in the EBF2−CD44− stromal cells in comparison with that in the EBF2+ or EBF2−CD44+ cell fractions, indicating a potential role of the EBF2− cells in hematopoiesis. The hematopoiesis supporting activity of the different stromal cell fractions were tested by in vitro hematopoietic stem and progenitor assays- cobblestone area forming cells (CAFC) and colony forming unit in culture (CFU-C). We found an increased numbers of CAFCs and CFU-Cs from hematopoietic stem and progenitor cells (Lineage−SCA1+KIT+) in culture with feeder layer of the EBF2−CD44− cells, compared to that in culture with previously defined EBF2+ MSCs (Qian, et al., manuscript, 2010), confirming a high capacity of the EBF2−CD44− cells to support hematopoietic stem and progenitor cell activities. Since the EBF2+ cells display a much higher CFU-F cloning frequency (1/6) than the CD44−EBF2− cells, this would also indicate that MSCs might not be the most critical regulators of HSC activity. Taken together, we have identified three functionally and molecularly distinct cell populations by using CD44 and transgenic EBF2 expression and provided clear evidence of that primary mesenchymal stem and progenitor cells reside in the CD44− cell fraction in mouse BM. The findings provide new evidence for biological and molecular features of primary stromal cell subsets and important basis for future identification of stage-specific cellular and molecular interaction pathways between hematopoietic cells and their cellular niche components. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document