Taxonomy and genetic divergence of Paranoplocephala kalelai (Tenora, Haukisalmi et Henttonen, 1985) (Cestoda, Anoplocephalidae) in the grey-sided vole Myodes rufocanus in northern Fennoscandia

2007 ◽  
Vol 52 (4) ◽  
Author(s):  
Voitto Haukisalmi ◽  
Lotta Hardman ◽  
Jukka Niemimaa ◽  
Heikki Henttonen

AbstractParanoplocephala kalelai (Tenora, Haukisalmi et Henttonen, 1985) is an anoplocephalid cestode that primarily parasitizes the grey-sided vole Myodes rufocanus (syn. Clethrionomys rufocanus) in northern Fennoscandia. In a preliminary molecular phylogenetic analysis, the cytochrome oxidase I (mtDNA) sequences of P. kalelai formed two divergent sublineages originating from two different localities in northern Finland and northern Norway. The present data confirm the existence of two strongly supported clades and show that their geographic distributions are overlapping in northernmost Finland. Relatively deep genetic divergence and coexistence of the two main clades at one of the localities suggest that the material may include two biological species. However, because the specimens representing the two mtDNA clades of P. kalelai are not morphometrically sufficiently differentiated and because the mtDNA clade of the specimens from the type locality is unknown, they are not assigned to different species. Comparison with the existing phylogeographic data of M. rufocanus suggests that the genetic structure of this host-specific cestode reflects the glacial and post-glacial history of its primary host. A redescription is presented for P. kalelai.

Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 792-796 ◽  
Author(s):  
Paul K. Strother ◽  
Clinton Foster

Molecular time trees indicating that embryophytes originated around 500 million years ago (Ma) during the Cambrian are at odds with the record of fossil plants, which first appear in the mid-Silurian almost 80 million years later. This time gap has been attributed to a missing fossil plant record, but that attribution belies the case for fossil spores. Here, we describe a Tremadocian (Early Ordovician, about 480 Ma) assemblage with elements of both Cambrian and younger embryophyte spores that provides a new level of evolutionary continuity between embryophytes and their algal ancestors. This finding suggests that the molecular phylogenetic signal retains a latent evolutionary history of the acquisition of the embryophytic developmental genome, a history that perhaps began during Ediacaran-Cambrian time but was not completed until the mid-Silurian (about 430 Ma).


2008 ◽  
Vol 98 (5) ◽  
pp. 499-507 ◽  
Author(s):  
H.C. Zhang ◽  
G.X. Qiao

AbstractThree traditional tribes of Fordini, Pemphigini and Eriosomatini comprise Pemphiginae, and there are two subtribes in Fordini and Pemphigini, respectively. Most of the species in this subfamily live heteroecious holocyclic lives with distinct primary host specificity. The three tribes of Pemphigini (except Prociphilina), Eriosomatini and Fordini use three families of plants, Salicaceae (Populus), Ulmaceae (Ulums) and Anacardiaceae (Pistacia and Rhus), as primary hosts, respectively, and form galls on them. Therefore, the Pemphigids are well known as gall makers, and their galls can be divided into true galls and pseudo-galls in type. We performed the first molecular phylogenetic study of Pemphiginae based on molecular data (EF-1α sequences). Results show that Pemphiginae is probably not a monophylum, but the monophyly of Fordini is supported robustly. The monophyly of Pemphigini is not supported, and two subtribes in it, Pemphigina and Prociphilina, are suggested to be raised to tribal level, equal with Fordini and Eriosomatini. The molecular phylogenetic analysis does not show definite relationships among the four tribes of Pemphiginae, as in the previous phylogenetic study based on morphology. It seems that the four tribes radiated at nearly the same time and then evolved independently. Based on this, we can speculate that galls originated independently four times in the four tribes, and there is no evidence to support that true galls are preceded by pseudo-galls, as in the case of thrips and willow sawflies.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiko Muraji ◽  
Norio Arakaki ◽  
Shigeo Tanizaki

The phylogenetic relationship, biogeography, and evolutionary history of closely related two firefly species,Curtos costipennisandC. okinawanus, distributed in the Ryukyu Islands of Japan were examined based on nucleotide sequences of mitochondrial (2.2 kb long) and nuclear (1.1-1.2 kb long) DNAs. In these analyses, individuals were divided among three genetically distinct local groups,C. costipennisin the Amami region,C. okinawanusin the Okinawa region, andC. costipennisin the Sakishima region. Their mtDNA sequences suggested that ancestralC. costipennispopulation was first separated between the Central and Southern Ryukyu areas, and the northern half was then subdivided betweenC. costipennisin the Amami andC. okinawanusin the Okinawa. The application of the molecular evolutionary clocks of coleopteran insects indicated that their vicariance occurred 1.0–1.4 million years ago, suggesting the influence of submergence and subdivision of a paleopeninsula extending between the Ryukyu Islands and continental China through Taiwan in the early Pleistocene.


2021 ◽  
pp. 1-28
Author(s):  
Yoshimasa Kumekawa ◽  
Haruka Fujimoto ◽  
Osamu Miura ◽  
Ryo Arakawa ◽  
Jun Yokoyama ◽  
...  

Abstract Harvestmen (Arachnida: Opiliones) are soil animals with extremely low dispersal abilities that experienced allopatric differentiation. To clarify the morphological and phylogenetic differentiation of the endemic harvestman Zepedanulus ishikawai (Suzuki, 1971) (Laniatores: Epedanidae) in the southern part of the Ryukyu Archipelago, we conducted molecular phylogenetic analyses and divergence time estimates based on CO1 and 16S rRNA sequences of mtDNA, the 28S rRNA sequence of nrDNA, and the external morphology. A phylogenetic tree based on mtDNA sequences indicated that individuals of Z. ishikawai were monophyletic and were divided into clade I and clade II. This was supported by the nrDNA phylogenetic tree. Although clades I and II were distributed sympatrically on all three islands examined (Ishigaki, Iriomote, and Yonaguni), heterogeneity could not be detected by polymerase chain reaction–restriction fragment length polymorphism of nrDNA, indicating that clades I and II do not have a history of hybridisation. Also, several morphological characters differed significantly between individuals of clade I and clade II. The longstanding isolation of the southern Ryukyus from the surrounding islands enabled estimation of the original morphological characters of both clades of Z. ishikawai.


2019 ◽  
Author(s):  
Jacob S. Berv ◽  
Leonardo Campagna ◽  
Teresa J. Feo ◽  
Ivandy Castro-Astor ◽  
Camila C. Ribas ◽  
...  

AbstractThe complex landscape history of the Neotropics has generated opportunities for population isolation and subsequent diversification that place this region among the most species-rich in the world. Detailed phylogeographic studies are required to uncover the biogeographic histories of Neotropical taxa, to identify evolutionary correlates of diversity, and to reveal patterns of genetic connectivity, disjunction, and potential differentiation among lineages from different areas of endemism. The White-crowned Manakin (Pseudopipra pipra) is a small suboscine passerine bird that is broadly distributed through the subtropical rainforests of Central America, the lower montane cloud forests of the Andes from Colombia to central Peru, the lowlands of Amazonia and the Guianas, and the Atlantic forest of southeast Brazil. Pseudopipra is currently recognized as a single, polytypic biological species. We studied the effect of the Neotropical landscape on genetic and phenotypic differentiation within this species using genomic data derived from double digest restriction site associated DNA sequencing (ddRAD), and mitochondrial DNA. Most of the genetic breakpoints we identify among populations coincide with physical barriers to gene flow previously associated with avian areas of endemism. The phylogenetic relationships among these populations imply a novel pattern of Andean origination for this group, with subsequent diversification into the Amazonian lowlands. Our analysis of genomic admixture and gene flow establishes a complex history of introgression between some western Amazonian populations. These reticulate processes confound our application of standard concatenated and coalescent phylogenetic methods and raise the question of whether a lineage in the western Napo area of endemism should be considered a hybrid species. Lastly, analysis of variation in vocal and plumage phenotypes in the context of our phylogeny supports the hypothesis that Pseudopipra is a species-complex composed of at least 8, and perhaps up to 17 distinct species which have arisen in the last ∼2.5 Ma.


2019 ◽  
Author(s):  
S. V. Dryomov ◽  
A. M. Nazhmidenova ◽  
E. B. Starikovskaya ◽  
S. A. Shalaurova ◽  
N. Rohland ◽  
...  

AbstractThe Central Siberian Plateau was last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through comprehensive mitochondrial DNA genomes retained in indigenous Siberian populations, the Ket, Tofalar, and Todzhi - we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia over the last 10,000 years. Accordingly, we generated 218 new complete mtDNA sequences and placed them into compound phylogenies along with 7 newly obtained and 70 published ancient mt genomes. Our findings reflect the origins and expansion history of mtDNA lineages that evolved in South-Central Siberia, as well as multiple phases of connections between this region and distant parts of Eurasia. Our result illustrates the importance of jointly sampling modern and prehistoric specimens to fully measure the past genetic diversity and to reconstruct the process of peopling of the high latitudes of the Siberian subcontinent.


2007 ◽  
Vol 20 (3) ◽  
pp. 252 ◽  
Author(s):  
Stephen D. Hopper ◽  
Andrew P. Brown

Drakaea Lindley, 1840 is a genus of 10 species of geophytic orchids endemic to the South-west Australian Floristic Region. The genus is renowned for its morphological and chemical adaptations, achieving pollination by sexual deception of male thynnid wasps. The history of taxa in Drakaea has been one of dispute and confusion right to the present day. Here we provide a revision of the genus, the first made by using modern collections and field data, formalising names for undescribed taxa featured by Hoffman and Brown (1992, 1998), several of which are threatened with extinction. We describe six new species: D. andrewsiae, D. concolor, D. confluens, D. gracilis, D. isolata and D. micrantha. Experimental baiting of male wasps has helped show the specific status of some of these new taxa. Molecular phylogenetic research is needed to clarify relationships and patterns of speciation in the genus. Five of the 10 Drakaea species are legally protected under the Western Australian Wildlife Conservation Act and the Commonwealth Environment Protection and Biodiversity Conservation Act, signalling the ongoing need for research and management to ensure the conservation of this unique part of Australia’s orchid heritage. D. andrewsiae has been recorded only three times from the Gnowangerup–Tunney district. Urgent surveys are needed to establish its conservation status.


2007 ◽  
Vol 21 (3) ◽  
pp. 207 ◽  
Author(s):  
Ronald M. Clouse ◽  
Gonzalo Giribet

Opiliones (harvestmen) in the suborder Cyphophthalmi are not known to disperse across oceans and each family in the suborder is restricted to a clear biogeographic region. While undertaking a revisionary study of the South-east Asian family Stylocellidae, two collections of stylocellids from New Guinea were noted. This was a surprising find, since the island appears never to have had a land connection with Eurasia, where the rest of the family members are found. Here, 21 New Guinean specimens collected from the westernmost end of the island (Manokwari Province, Indonesia) are described and their relationships to other cyphophthalmids are analysed using molecular sequence data. The specimens represent three species, Stylocellus lydekkeri, sp. nov., S. novaguinea, sp. nov. and undescribed females of a probable third species, which are described and illustrated using scanning electron microscope and stereomicroscope photographs. Stylocellus novaguinea, sp. nov. is described from a single male and it was collected with a juvenile and the three females of the apparent third species. Molecular phylogenetic analyses indicate that the new species are indeed in the family Stylocellidae and they therefore reached western New Guinea by dispersing through Lydekker’s line – the easternmost limit of poor dispersers from Eurasia. The New Guinean species may indicate at least two episodes of oceanic dispersal by Cyphophthalmi, a phenomenon here described for the first time. Alternatively, the presence in New Guinea of poor dispersers from Eurasia may suggest novel hypotheses about the history of the island.


2019 ◽  
Vol 190 (4) ◽  
pp. 389-404 ◽  
Author(s):  
Kálmán Könyves ◽  
John David ◽  
Alastair Culham

Abstract Hoop-petticoat daffodils are a morphologically congruent group comprised of two distinct lineages in molecular phylogenetic trees of Narcissus. It is possible that the morphological similarity is a product of both historic and current low-level gene flow between these lineages. For the first time, we report population sampling from across the entire range of distribution covering the Iberian Peninsula and Morocco. In total, 455 samples were collected from 59 populations. Plastid DNA sequences of matK and ndhF were generated alongside 11 microsatellite loci to permit comparison between plastid and nuclear lineage histories. The plastid DNA phylogenetic tree was highly congruent with previous molecular studies and supported the recognition of these two lineages of hoop-petticoat daffodils as separate sections. Assignment of samples to sections sometimes differed between plastid DNA and (nuclear) microsatellite data. In these cases, the taxa had previously been the focus of dissent in taxonomic placement based on morphology. These discrepancies could be explained by hybridization and introgression among the two lineages during the evolution of hoop-petticoat daffodils, and shows that placement of species in sections is dependent on the source of data used. This study underlines the complex evolutionary history of Narcissus and highlights the discrepancies between floral morphology and phylogeny, which provides a continuing challenge for the systematics of Narcissus.


Sign in / Sign up

Export Citation Format

Share Document