Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions

2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Grzegorz Pawlicki ◽  
Bartosz Staniszewski ◽  
Katarzyna Witt ◽  
Włodzimierz Urbaniak ◽  
Stefan Lis

AbstractResults of spectroscopic investigations related to complex compositions of 3-substituted derivatives of pentane-2,4-dione (β-diketonate) complexes with chosen d- and f-metal ions are presented. Ligands 3-allylacetylacetone (3all-acac) and 3-benzylacetylacetone (3ben-acac) were prepared and used for the complexation study with Cu(II), Co(II), Nd(III), and Ho(III) metal ions. Based on the absorption spectra of lanthanide ions in their hypersensitive transitions, with the use of computer assisted target factor analysis (CAT) and absorption spectra of the ligands with Cu(II) and Co(II), the verification of complex compositions and the determination of their stability constants were achieved. In case of Nd(III) and Ho(III) complexes with β-diketone ligands, absorption of their maxima were studied in the range of hypersensitive transitions 4 I 9/2 → 4 F 7/2 + 4 S 3/2 (λ max ∼ 734 nm and 748 nm) for Nd(III) and in the range of 435–465 nm, corresponding to the hypersensitive transition 5 G 6 → 5 I 8 (λ max ∼ 450 nm), for Ho(III).

Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


1983 ◽  
Vol 48 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Vlastimil Kubáň ◽  
Miroslav Macka

The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the reactions of formation of the ML and ML2 complexes of both reagents with cadmium(II) ions were determined by graphical analysis and numerical interpretation of the absorbance-pH curves by the modified SQUAD-G program. Optimal conditions were proposed for the spectrophotometric determination of Cd in 10% v/v ethanol medium in the presence of 0.1% w/v Triton X-100 or 1% w/v Brij 35. BrPADAP and ClPADAP are the most sensitive spectrophotometric reagents for the determination of cadmium(II) ions (ε = 1.28-1.44 . 105 mmol-1 cm2 at 560 nm and pH 8.0-9.5) with a high colour contrast in the reaction (Δλmax ~117 nm) and a selectivity similar to that of other N-heterocyclic azodyes (PAR, PAN, etc.).


1982 ◽  
Vol 47 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Irena Němcová ◽  
Pavla Plocková ◽  
Tran Hong Con

The absorption spectra of the binary complexes of lanthanoids with bromopyrogallol red were measured and the formation of ternary complexes with cation active tenside, Septonex, was studied. Optimal conditions were found for the formation of these complexes and the possibility of their use in the photometric determination of lanthanoids was demonstrated on several examples.


1982 ◽  
Vol 47 (10) ◽  
pp. 2676-2691 ◽  
Author(s):  
Miroslav Macka ◽  
Vlastimil Kubáň

The optical and acid-base characteristics of BrPADAP and ClPADAP were studied in mixed water-ethanol and water-DMF media and in 10% ethanol medium in the presence of cationic, anionic and nonionic tensides. The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the ML and ML2 complexes with zinc(II) ions were found by graphical analysis and numerical interpretation of the absorbance curves by the modified SQUAD-G program. Optimal conditions were found for the spectrophotometric determination of Zn(II) in the presence of 0.1% Triton X-100 or 1% Brij 35 in alkaline media with pH = 6.5-10. BrPADAP and ClPADAP are the most sensitive reagents (ε = 1.3-1.6 . 105 mmol-1 cm2 at 557 and 560 nm, respectively) for the determination of zinc with high colour contrast of the reaction (Δλ = 104 nm) and selectivity similar to that for the other N-heterocyclic azodyes (PAN, PAR, etc.).


Sign in / Sign up

Export Citation Format

Share Document