Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production

2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Darin Phukingngam ◽  
Orathai Chavalparit ◽  
Dararat Somchai ◽  
Maneerat Ongwandee

AbstractBiodiesel-processing factories employing the alkali-catalyzed transesterification process generate a large amount of wastewater containing high amount of methanol, glycerol, and oil. As such, wastewater has high potential to produce biogas using anaerobic treatment. The aim of this research was to investigate the performance of an anaerobic baffled reactor for organic removal and biogas production from biodiesel wastewater. The effect of different organic loading rates, varying from 0.5 kg m−3 d−1 to 3.0 kg m−3 d−1 of chemical oxygen demand, was determined using three 22 L reactors, each comprising five separate compartments. Wastewater was pretreated with chemical coagulants to partially remove oil prior to experimentation. Results show that the anaerobic baffled reactor operated at 1.5 kg m−3 d−1 of chemical oxygen demand and ten days of hydraulic retention time provided the best removal efficiencies of 99 % of chemical oxygen demand, 100 % of methanol, and 100 % of glycerol. Increasing the organic loading rate over 1.5 kg m−3 d−1 of chemical oxygen demand led to excessive accumulation of volatile fatty acids thereby making the pH drop to a value unfavorable for methanogenesis. The biogas production rate was 12 L d−1 and the methane composition accounted for 64–74 %. Phase-separated characteristics revealed that the highest chemical oxygen demand removal percentage was achieved in the first compartment and the removal efficiency gradually decreased longitudinally. A scanning electron microscopic study indicated that the most predominant group of microorganisms residing on the external surface of the granular sludge was Methanosarcina.

2017 ◽  
Vol 35 (9) ◽  
pp. 991-996 ◽  
Author(s):  
Maritza A Macias-Corral ◽  
Zohrab A Samani ◽  
Adrian T Hanson ◽  
Paul A Funk

In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) production, waste minimisation, and the digestate value as soil amendment. The anaerobic digestion process did not show signs of inhibition. Biogas production increased during the first 2 weeks of operation, when chemical oxygen demand and volatile fatty acid concentrations and the organic loading rate to the system were high. Chemical oxygen demand from the anaerobic columns remained relatively steady after the first week of operation, even at high organic loading rates. The experiment lasted about 1 month and produced 96.5 m3 of biogas (68 m3 of CH4) per tonne of waste. In terms of chemical oxygen demand to methane conversion efficiency, the system generated 62% of the theoretical methane production; the chemical oxygen demand/volatile solids degradation rate was 62%, compared with the theoretical 66%. The results showed that co-digestion and subsequent digestate composting resulted in about 60% and 75% mass and volume reductions, respectively. Digestate analysis showed that it can be used as a high nutrient content soil amendment. The digestate met Class A faecal coliform standards (highest quality) established in the United States for biosolids. Digestion and subsequent composting concentrated the digestate nitrogen, phosphorus, and potassium content by 37%, 24%, and 317%, respectively. Multi-substrate co-digestion is a practical alternative for agricultural waste management, minimisation of landfill disposal, and it also results in the production of valuable products.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2015 ◽  
Vol 72 (8) ◽  
pp. 1383-1389 ◽  
Author(s):  
M. M. Nakazawa ◽  
W. R. S. Silva Júnior ◽  
M. T. Kato ◽  
S. Gavazza ◽  
L. Florencio

In this study, we evaluated the use of an up-flow anaerobic sludge blanket (UASB) reactor to treat crude glycerol obtained from cottonseed biodiesel production. The laboratory-scale UASB reactor (7.0 L) was operated at ambient temperature of 26.5°C with chemical oxygen demand (COD) concentrations between 0.5 and 8.0 g/L. The volatile fatty acid contents, pH, inorganic salt contents and biogas production were monitored during a 280-day experimental period. Molecular biology techniques were used to assess the microbial diversity in the bioreactor. The reactor achieved COD removal efficiencies of up to 92% except during one phase when the efficiency decreased to 81%. Biogas production remained stable throughout the experimental period, when the fraction converted to methane reached values as high as 68%. The profile of the denaturing gradient gel electrophoresis (DGGE) bands suggested slight changes in the microbial community during reactor operation. The overall results indicated that the crude glycerol from biodiesel production can serve as a suitable substrate for anaerobic degradation with a stable reactor performance and biogas production as long as the applied organic loads are up to 8.06 kg COD/m3·d.


2020 ◽  
Author(s):  
Getachew D. Gebreeyessus ◽  
Andualem Mekonnen ◽  
Yonas Chebude ◽  
Asaithambi Perumal ◽  
Esayas Alemayehu

Abstract The objective of the current study is to determine the optimum organic loading rate for a continuous anaerobic digestion (AD) of an ethanol distillery stillage with and without of feed pretreatment. The AD has been performed in scoria packed continuous reactors. The pretreatment of the molasses ethanol distillery stillage brought a significantly better chemical oxygen demand (COD) removal with an increased loading rate to 2000 mg/L-d, when compared with the raw. The results obtained also showed a complete removal of the BOD, which was realized after applying the coupling of AD and aerobic treatments. During aerobic treatment, 68% of the organics were removed within eight hours of retention time. Despite the persistence of color, the removal of organics from integrating the wet air pretreatment, continuous AD and aerobic remediations appear to be promising technique towards the sustainable management of stillage thereby meeting discharge limits.


2001 ◽  
Vol 44 (4) ◽  
pp. 137-144 ◽  
Author(s):  
M. De Almeida Prado Montenegro ◽  
E. De Mattos Moraes ◽  
H. Moreira Soares ◽  
R. Filomena Vazoller

The present research aimed at evaluating pentachlorophenol (PCP) degradation in a hybrid reactor supplied with a mixture of fatty acids (propionic, butyric, acetic and lactic) and methanol. The performance of the reactor is remarkably stable and efficient during PCP additions at range of 2.0 to 21.0 mg/L. The reduction of chemical oxygen demand (COD) was around 97% and methane was found to be 86% in the biogas production. The efficiency of volatile fatty acids breakdown was 93%, 64% and 74% respectively for butyric, propionic and acetic. PCP total removal of more than 99% was reached by granular sludge activities formed during 21 months of reactor operation. Methanogenic microorganisms predominance was noticed with 105 to 106 cells/mL during enumeration on methanol or lactate added to sulfate culture media. The removal rate was 1.07 mg PCP · g−1 VS · d−1 during the highest PCP concentration addition.


2016 ◽  
Vol 14 (6) ◽  
pp. 1241-1254 ◽  
Author(s):  
Ousman R. Dibaba ◽  
Sandip K. Lahiri ◽  
Stephan T’Jonck ◽  
Abhishek Dutta

Abstract A pilot scale Upflow Anaerobic Contactor (UAC), based on upflow sludge blanket principle, was designed to treat vinasse waste obtained from beet molasses fermentation. An assessment of the anaerobic digestion of vinasse was carried out for the production of biogas as a source of energy. Average Organic loading rate (OLR) was around 7.5 gCOD/m3/day in steady state, increasing upto 8.1 gCOD/m3/day. The anaerobic digestion was conducted at mesophilic (30–37 °C) temperature and a stable operating condition was achieved after 81 days with average production of 65 % methane which corresponded to a maximum biogas production of 85 l/day. The optimal performance of UAC was obtained at 87 % COD removal, which corresponded to a hydraulic retention time of 16.67 days. The biogas production increased gradually with OLR, corresponding to a maximum 6.54 gCOD/m3/day (7.4 % increase from initial target). A coupled Artificial Neural Network-Differential Evolution (ANN-DE) methodology was formulated to predict chemical oxygen demand (COD), total suspended solids (TSS) and volatile fatty acids (VFA) of the effluent along with the biogas production. The method incorporated a DE approach for the efficient tuning of ANN meta-parameters such as number of nodes in hidden layer, input and output activation function and learning rate. The model prediction indicated that it can learn the nonlinear complex relationship between the parameters and able to predict the output of the contactor with reasonable accuracy. The utilization of the coupled ANN-DE model provided significant improvement to the study and helps to study the parametric effect of influential parameters on the reactor output.


2003 ◽  
Vol 48 (4) ◽  
pp. 229-233 ◽  
Author(s):  
P.A. Scherer ◽  
S. Dobler ◽  
S. Rohardt ◽  
R. Loock ◽  
B. Büttner ◽  
...  

Since April 2000 a two-step anaerobic plant with two subsequent 500 m3 reactors has been producing biogas from fodder beet silage (pH 4.1) as the sole substrate. The plant is located at Kirchlengern near Bielefeld, Germany. Initially the reactors were inoculated with swine manure at 37°C. After a start-up phase the process was sustained at pH 7.5-8.0 by feeding with the silage as sole substrate twice a day. Parallel to the biogas plant at Kirchlengern four one-step laboratory reactors were continuously driven at temperatures of 37°C, 45°C, 60°C and 65°C. They were fed with the same silage, but only once per day (one impulse). The organic loading rate (OLR) was adjusted to 3.9 g volatile solids (VS)/(l*d) with a concomitant hydraulic retention time (HRT) of 27 d. There was no problem with starting the reactors, but after 86 days the volumetric gas production of the 65°C reactor ceased and a high amount of approximately 130 mM propionate could be determined. By decreasing the temperature down to 60°C a stable reactor performance was recovered for a period of at least 250 further days. During impulse feeding it was observed that the quickest recovery of gas production could be observed at 37°C or at 45°C. Recovery of 75% gas volume (related to the value before or after impulse feeding) was obtained after 5.5 and 7.5 h of feeding time point whereas the 60°C reactor needed 16 h. Slight significant differences were seen in the spectrum of volatile fatty acids (VFA) reaching at 37° or 45°C its maximum with 10-30 mM total VFA at 2-3 h after feeding. After this the VFA level declined to nearly zero (except for the 60°C reactor). Therefore the 37°C reactor was favoured. A double experiment with a second 37°C reactor was started by a somewhat different inoculation procedure from the remaining 3 reactors, but revealed similar results. By increasing the temperature no significantly different specific gas production rates and methane yields could be observed, e.g. it gave 600-700 l biogas from 1 kg VS. The corresponding methane content ranged between 62-64%. With a methane content of 63 ± 1% a yield of 40.1 ± 2 m3 methane/ton fresh fodder beet silage was obtained.


Sign in / Sign up

Export Citation Format

Share Document