Hybrid reactor performance in pentachlorophenol (pcp) removal by anaerobic granules

2001 ◽  
Vol 44 (4) ◽  
pp. 137-144 ◽  
Author(s):  
M. De Almeida Prado Montenegro ◽  
E. De Mattos Moraes ◽  
H. Moreira Soares ◽  
R. Filomena Vazoller

The present research aimed at evaluating pentachlorophenol (PCP) degradation in a hybrid reactor supplied with a mixture of fatty acids (propionic, butyric, acetic and lactic) and methanol. The performance of the reactor is remarkably stable and efficient during PCP additions at range of 2.0 to 21.0 mg/L. The reduction of chemical oxygen demand (COD) was around 97% and methane was found to be 86% in the biogas production. The efficiency of volatile fatty acids breakdown was 93%, 64% and 74% respectively for butyric, propionic and acetic. PCP total removal of more than 99% was reached by granular sludge activities formed during 21 months of reactor operation. Methanogenic microorganisms predominance was noticed with 105 to 106 cells/mL during enumeration on methanol or lactate added to sulfate culture media. The removal rate was 1.07 mg PCP · g−1 VS · d−1 during the highest PCP concentration addition.

2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Darin Phukingngam ◽  
Orathai Chavalparit ◽  
Dararat Somchai ◽  
Maneerat Ongwandee

AbstractBiodiesel-processing factories employing the alkali-catalyzed transesterification process generate a large amount of wastewater containing high amount of methanol, glycerol, and oil. As such, wastewater has high potential to produce biogas using anaerobic treatment. The aim of this research was to investigate the performance of an anaerobic baffled reactor for organic removal and biogas production from biodiesel wastewater. The effect of different organic loading rates, varying from 0.5 kg m−3 d−1 to 3.0 kg m−3 d−1 of chemical oxygen demand, was determined using three 22 L reactors, each comprising five separate compartments. Wastewater was pretreated with chemical coagulants to partially remove oil prior to experimentation. Results show that the anaerobic baffled reactor operated at 1.5 kg m−3 d−1 of chemical oxygen demand and ten days of hydraulic retention time provided the best removal efficiencies of 99 % of chemical oxygen demand, 100 % of methanol, and 100 % of glycerol. Increasing the organic loading rate over 1.5 kg m−3 d−1 of chemical oxygen demand led to excessive accumulation of volatile fatty acids thereby making the pH drop to a value unfavorable for methanogenesis. The biogas production rate was 12 L d−1 and the methane composition accounted for 64–74 %. Phase-separated characteristics revealed that the highest chemical oxygen demand removal percentage was achieved in the first compartment and the removal efficiency gradually decreased longitudinally. A scanning electron microscopic study indicated that the most predominant group of microorganisms residing on the external surface of the granular sludge was Methanosarcina.


1999 ◽  
Vol 39 (5) ◽  
pp. 203-210 ◽  
Author(s):  
Salih Rebac ◽  
Jules B. van Lier ◽  
Piet Lens ◽  
Alfons J. M. Stams ◽  
Freddy Dekkers ◽  
...  

Psychrophilic (2 to 20°C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two module expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments exceeded 90 % in the single module reactor at an organic loading rate up to 12 g COD dm−3 day−1 and a HRT of 1.6 h at 10-12°C ambient temperature using influent concentrations ranging from 500 to 800 mg COD dm−3. When a two module EGSB system was used at the temperature range 10-15°C, soluble COD removal and volatile fatty acids removal of 67-78% and 90-96% were achieved, respectively, and an OLR between 2.8-12.3 kg COD m−3 day−1 and a HRT of 3.5 h. The second module serves mainly as a scavenger of non-degraded volatile fatty acids (VFA) from the first module. The optimal temperatures for substrate conversion of reactor sludge, after it has been exposed to long term psychrophilic conditions, were similar to those of the original mesophilic inoculum. The specific activities of the sludge in the reactor increased in time by a factor 3, indicating enrichment of methanogens and acetogens even at low temperatures. By adapting the process design to the expected prevailing conditions inside the reactor, the loading potentials and overall stability of the anaerobic high-rate process may be distinctly improved under psychrophilic conditions. The results obtained clearly reveal the big potentials of anaerobic wastewater treatment under low ambient (10-12°C) temperature conditions for low strength wastewaters, very likely including domestic sewage.


Author(s):  
S. A. Díaz-Barajas ◽  
M. A. Garzón-Zúñiga ◽  
I. Moreno-Andrade ◽  
J. M. Vigueras-Cortés ◽  
B. E. Barragán-Huerta

Abstract Mezcal is an alcoholic artisanal drink made from agave plants in Mexico. Its production causes the generation of wastewater called vinasses, which are highly polluting residues due to its concentration of organic matter as chemical oxygen demand (COD) (35,000–122,000 mg/L) and acidity (pH < 4). Due to their organic content, these residues can be used in dark fermentation to obtain biogas, which is rich in hydrogen. In this work, the acclimation of inoculum by means of a dark fermentation process, in the presence of toxic compounds from mezcal vinasses was studied. The strategy of increasing the initial concentration of vinasse in each treatment cycle in a SBR reactor was applied. It was possible to obtain a maximum biogas production of 984 ± 187 mL/L, from vinasses (18,367 ± 1,200 mg COD/L), with an organic matter removal efficiency of 20 ± 1%. A maximum generation of volatile fatty acids (VFA) of 980 ± 538 mg/L equivalent to a production of 74 ± 21% of the influent concentration and removal rate of organic matter of 1,125 ± 234 mg COD/L d−1 equivalent to a removal efficiency of 20 ± 4% was obtained from vinasses with a concentration of 19,648 ± 1,702 mg COD/L.


2019 ◽  
Vol 79 (6) ◽  
pp. 1174-1183
Author(s):  
Tao Liu ◽  
Zhiqiang Shen ◽  
Chunyu Zhang ◽  
Yudong Song ◽  
Jie Li ◽  
...  

Abstract The objective of this work was to evaluate the effect of influent pH on the hydrolytic acidification (HA) performance and microbial community structure in an expanded granular sludge bed (EGSB) pretreating crotonaldehyde manufacture wastewater (CMW) after ozonation. The results showed that higher chemical oxygen demand (COD) removal rate (40.1%) and acidification degree (27.6%) were obtained at pH 8.0 than those at pH 6.0 and pH 4.0. The concentration of extractable extracellular polymeric substance (EPS) in the sludge gradually decreased with the pH decreasing from 8.0 to 4.0. A similar change was also observed for the concentration of total volatile fatty acids (TVFA) in the effluent. The optimal detoxification efficiency by the HA process was obtained at pH 8.0, with higher removal efficiency (all higher than 90%) of the main toxic pollutants (crotonaldehyde, 5-formyl-6-methyl-4,5-dihydropyran, etc.) and higher anaerobic biodegradation rate (44.5%) in biochemical methane potential (BMP) assay. Among the predominant genera, the Acinetobacter and Pseudomonas were possibly related to biodegradation of pollutants, since their higher relative abundance also coincided with the better performance of the HA process at pH 8.0.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1580
Author(s):  
Farokh laqa Kakar ◽  
Ahmed El Sayed ◽  
Neha Purohit ◽  
Elsayed Elbeshbishy

The main objective of this study was to evaluate the hydrothermal pretreatment’s retention time influence on the volatile fatty acids and biomethane production from thickened waste activated sludge under mesophilic conditions. Six different retention times of 10, 20, 30, 40, 50, and 60 min were investigated while the hydrothermal pretreatment temperature was kept at 170 °C. The results showed that the chemical oxygen demand (COD) solubilization increased by increasing the hydrothermal pretreatment retention time up to 30 min and stabilized afterwards. The highest COD solubilization of 48% was observed for the sample pretreated at 170 °C for 30 min. Similarly, the sample pretreated at 170 °C for 30 min demonstrated the highest volatile fatty acids yield of 14.5 g COD/Lsubstrate added and a methane yield of 225 mL CH4/g TCODadded compared to 4.3 g COD/Lsubstrate added and 163 mL CH4/g TCODadded for the raw sample, respectively. The outcome of this study revealed that the optimum conditions for solubilization are not necessarily associated with the best fermentation and/or digestion performance.


2012 ◽  
Vol 531 ◽  
pp. 528-531 ◽  
Author(s):  
Na Wei

Anaerobic digestion is an economic and environmentally friendly technology for treating the biomass material-sewage sludge, but has some limitations, such as the low efficient biogass production. In this paper ultrasound was proposed as pre-treatment for effective sludge anaerobic digestion. Sludge anaerobic digestion experiments with ultrasonic pretreatment was investigated. It can be seen that this treatment effectively leaded to the increase of soluble chemical oxygen demand(SCOD) and volatile fatty acids(VFA)concentration. High concentration of VFA leaded to a increase in biogas production. Besides, the SV of sludge was reduced and the settling characteristics of sludge was improved after ultrasonic pretreatment. It can be concluded that sludge anaerobic digestion with ultrasonic pretreatment is an effective method for biomass material transformation.


2010 ◽  
Vol 113-116 ◽  
pp. 1476-1480
Author(s):  
Xiao Ye Liu ◽  
Yi Sun ◽  
Jian Yu Yang ◽  
Yong Feng Li

This papre discussed the ability of H2-production and wastewater treatment, a continuous stirred tank reactor (CSTR)using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the pH value was 4.0~4.5, OLR was 24.5kg/(m3•d), oxidation-reduction potential was -350~-450mv, temperature was 34.0°C~36.0°C, hydraulic retention time was 6h~8h, the maximum yield of biogas production reached 20L/d and the maximum content of hydrogen is 70%. Detection of the end liquid product, ethanol and acetic acid are main, they are 70% ~90% of the total liquid product, so that is called ethanol-type fermentation.


Sign in / Sign up

Export Citation Format

Share Document