A reburning process using sewage sludge-derived syngas

2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Sebastian Werle

AbstractThe motivation for this work was to define the reburning potential of sewage sludge (SS) gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was made. All calculations were performed using the Chemkin program and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 3.0 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000 K to 1200 K. The highest reduction efficiency was achieved when the molar flow-ratio of the syngas was 15 %. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions and the amount of coal needed to produce electricity and heat. Furthermore, advanced reburning, a more complex process, achieved an efficiency of up to 80 %. Calculations show that the syngas thus analysed can provide better results.

Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6229
Author(s):  
Scott C. Rowe ◽  
Taylor A. Ariko ◽  
Kaylin M. Weiler ◽  
Jacob T. E. Spana ◽  
Alan W. Weimer

When driven by sunlight, molten catalytic methane cracking can produce clean hydrogen fuel from natural gas without greenhouse emissions. To design solar methane crackers, a canonical plug flow reactor model was developed that spanned industrially relevant temperatures and pressures (1150–1350 Kelvin and 2–200 atmospheres). This model was then validated against published methane cracking data and used to screen power tower and beam-down reactor designs based on “Solar Two,” a renewables technology demonstrator from the 1990s. Overall, catalytic molten methane cracking is likely feasible in commercial beam-down solar reactors, but not power towers. The best beam-down reactor design was 9% efficient in the capture of sunlight as fungible hydrogen fuel, which approaches photovoltaic efficiencies. Conversely, the best discovered tower methane cracker was only 1.7% efficient. Thus, a beam-down reactor is likely tractable for solar methane cracking, whereas power tower configurations appear infeasible. However, the best simulated commercial reactors were heat transfer limited, not reaction limited. Efficiencies could be higher if heat bottlenecks are removed from solar methane cracker designs. This work sets benchmark conditions and performance for future solar reactor improvement via design innovation and multiphysics simulation.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1951 ◽  
Author(s):  
Małgorzata Wzorek

The paper assesses the impact of combustion of biofuels produced based on municipal sewage sludge in stoker-fired boilers on the amount of pollutant emissions and examines the tendency of ash deposition of biofuels formed during the combustion process. The combustion tests were performed in a laboratory system enabling simulation of a combustion process present in stoker-fired boilers. The study was conducted for three types of biofuels; i.e., fuel from sewage sludge and coal slime (PBS fuel), sewage sludge and meat and bone meal (PBM fuel) and fuel based on sewage sludge and sawdust (PBT) with particle size of 35 mm and 15 mm. This paper describes and compares the combustion process of biofuels with different granulation and composition and presents the results of changes in emission values of NOx, SO2, CO, and CO2. The emission results were compared with the corresponding results obtained during combustion of hard coal. The results showed that biofuels with lower particle sizes were ignited faster and the shortest ignition time is achieved for fuel based on sewage sludge and coal slime-PBS fuel. Also, the highest NO and SO2 emissions were obtained for PBS fuel. During the combustion of fuel based on sewage sludge and meat and bone meal (PBM), on the other hand, the highest CO2 emissions were observed for both granulations. Biofuels from sludge show a combustion process that is different compared to the one for hard coal. The problems of ash fouling, slagging, and deposition during biofuels combustion were also identified. The tendency for ash slagging and fouling is observed, especially for fuel from sewage sludge and meat and bone meal (PBM) and fuel based on sewage sludge and sawdust (PBT) ashes which consist of meat and bone meal and sawdust which is typical for biomass combustion.


Author(s):  
Fuqiang Liu ◽  
Yong Mu ◽  
Cunxi Liu ◽  
Jinhu Yang ◽  
Yanhui Mao ◽  
...  

The low NOX emission technology has become an important feature of advanced aviation engine. A wide range of applications attempt to take advantage of the fact that staged combustion operating under lean-premixed-prevaporized (LPP) conditions can significantly decrease pollution emissions and improve combustion efficiency. In this paper a scheme with fuel centrally staged and multi-point injection is proposed. The mixing of fuel and air is improved, and the flame temperature is typically low in combustion zone, minimizing the formation of nitrogen oxides (NOX), especially thermal NOX. In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics (CFD), a chemical reactor network (CRN), including several different ideal reactor, namely perfectly stirred reactor (PSR) and plug flow reactor (PFR), is constructed to simulate the combustion process. The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOX and carbon monoxide (CO) emissions were studied by Chemical CRN model. Then the NOX emission in the staged combustor was researched experimentally. The effects of the amount of pilot fuel and primary fuel on pollution emissions were obtained by using gas analyzer. Finally, the effects of pilot fuel proportion on NOX emission were discussed in detail by comparing predicts of CRN and experimental results.


2001 ◽  
Vol 677 ◽  
Author(s):  
Valeria Bertani ◽  
Carlo Cavallotti ◽  
Maurizio Masi ◽  
Sergio Carrá

ABSTRACTPalladium clusters have been chosen to represent a typical supported heterogeneous catalyst and their interaction with hydrocarbons has been investigated theoretically. The calculations were performed through density functional theory and the Becke-Lee-Yang-Parr hybrid (B3LYP) functional was adopted to calculate exchange and correlation energy. An effective core potential basis set (ECP on core electrons and Dunning/Huzinaga on outer electrons) was found sufficiently accurate to reproduce experimental data. Clusters containing up to seven Pd atoms were considered and their interaction with hydrogen, methane and ethane and their fragments was analyzed and a kinetic study of the system was performed. Transition states structures and energies were calculated through quantum mechanics and kinetic constants were derived from a statistic thermodynamic approach. On the basis of such information, a kinetic model that accounts for ethane transformations. Finally the kinetic scheme was embedded in a plug flow reactor model and simulations were performed to test the validity of the developed mechanism. In this way information obtained at the atomic scale were adopted to study phenomena occurring on the much higher reactor scale.


Author(s):  
Christian Storm ◽  
Helmut Rüdiger ◽  
Hartmut Spliethoff ◽  
Klaus R. G. Hein

Biomass and sewage sludge are attracting increasing interest in power plant technology as a source of carbon dioxide-neutral fuels. A new way to reduce the consumption of fossil fuels could be the co-combustion or co-gasification of coal and biomass or coal and sewage sludge. In both cases, pyrolysis is the first step in the technical process. In order to obtain detailed information about the pyrolysis of coal/biomass and coal/sewage sludge mixtures as well as unblended fuels, the ‘Institut für Verfahrenstechnik und Dampfkesselwesen (IVD)’ at the University of Stuttgart has carried out investigations using an electrically heated entrained flow reactor. One application of substitution of fossil fuels could be the utilization of pyrolysis gas or gas generated in a gasification process as a reburn fuel in conventional boilers fired with fossil fuels. Investigation showed that generated gas from coal, biomass and sewage sludge pyrolysis and gasification have high NOx reduction efficiencies compared to methane or low calorific gases using it as a reburn fuel in coal fired boilers. In order to take advantage of this pretreatment process the release of organic as well as of mineral compounds during the pyrolysis or gasification has to be investigated. For coal pyrolysis and gasification the reactions are known since there was a lot of research all over the world. Biomass or sewage sludge have other structures compared to fossil fuels and contain alkali, chlorine and other problematic compounds, like heavy metals. The release of those elements and of the organic matter has to be investigated to characterize the gas and the residual char. The optimum process parameters regarding the composition of the generated gas and the residual char have to be found out. The IVD has studied the co-pyrolysis of biomass and sewage sludge together with a high volatile hard coal. The main parameters to be investigated were the temperature of the pyrolysis reactor (400°C–1200°C) and the coal/biomass and coal/sewage sludge blends. Besides co-pyrolysis experiments test runs with unmixed main fuels were carried out with the hard coal, straw as biomass, and a sewage sludge. It was expected that the high reactivity of biomass and sewage sludge would have an effect on the product composition during co-pyrolysis. The test runs provided information about fuel conversion efficiency, pyrolysis gas and tar yield, and composition of pyrolysis gas and tar. Besides gas and tar analysis investigations regarding the path of trace elements, like heavy metals, alkali, chlorine and nitrogen components, during the pyrolysis process varying different parameters have been carried out. The fuel nitrogen distribution between pyrolysis gas, tar and char has been analyzed as well as the ash composition and thus the release of mineral components during pyrolysis. Increasing reaction temperatures result in a higher devolatilization for all fuels. Biomass shows a devolatilization of up to 80% at high temperatures. Hard coal shows a weight toss of approx. 50% at same temperatures. Sewage sludge devolatilizes also up to 50%, which is nearly a total release of organic matter, because of the high ash content of about 50% in sewage sludge. Gaseous hydrocarbons have a production maximum at about 800°C reaction temperature for all feedstocks. Carbon monoxide and hydrogen are increasingly formed at high pyrolysis temperatures due to gasification reactions. Mineral elements are released during straw pyrolysis, but within the hot gas filtration unit further recombination reactions and condensation of elements on panicles take place. There is no release of mineral elements during sewage sludge pyrolysis and only a slight release of heavy metals at high pyrolysis temperatures. The effect of co-pyrolysis depends on the feedstocks used in association with the panicle size. The co-pyrolysis test runs showed that a synergetic effect exists when using sewage sludge and hard coal. There is a higher char production related to the unmixed fuels; gas and tar formation are lowered. Co-pyrolysis test runs with biomass and coal did not show this effect on the pyrolysis products. Reasons for this behaviour could be a difference in particle size and material structure which influences the devolatilization velocity of the fuels used or the relatively short residence time in the entrained flow reactor. It seems possible that coal pyrolysis is influenced by the reaction atmosphere, generated in co-pyrolysis. In the co-pyrolysis of coal and sewage sludge, the sludge degases much faster than coal because of the structure of sewage sludge and its small panicle. The coal pyrolysis taking place afterwards in the reaction tube occurs in a different atmosphere, compared to the mono-pyrolysis experiments. The devolatilization of coal in the co-pyrolysis experiments together with straw was not disturbed by the gaseous products of straw pyrolysis, because the large straw particles showed a delayed degasing compared to the coal particles.


Sign in / Sign up

Export Citation Format

Share Document