Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Cetin Kantar ◽  
Aydeniz Demir ◽  
Nurcan Koleli

AbstractLaboratory batch sorption-desorption and column experiments were performed to better understand the effects of microbial exopolymeric substances (EPS) on Cr(III) sorption/desorption rates in the soil-water system. The experiments were carried out in two different modes: one mode (sorption) in which Cr(III) and EPS were applied simultaneously, and the other (desorption) included the sequential application of Cr(III) and EPS to the soil-water system. The batch sorption and desorption experiments showed that, while chromium(III) desorption was significantly enhanced in the presence of EPS relative to non-EPS-containing systems, the desorption rates were much smaller than the sorption rates, and the fraction dissolved by EPS accounted for only a small portion of the total chromium initially sorbed onto soil minerals. Similarly, the column experiments suggested that, while the microbial EPS led to an increase in Cr dissolution relative to non-EPS-containing systems, only a small portion of the total chromium initially added to the soil was mobilised. The differences observed in Cr sorption and desorption rates can be explained through the very low solubility and strong interactions of chromium species with soil minerals as well as the mass transfer effects associated with low diffusion rates. The overall results suggest that, while microbial EPS may play an important role in microbial Cr(VI) treatment in sub-surface systems due to the formation of soluble Cr-EPS complexes, the extent and degree of Cr mobilisation are highly dependent on the type of initial Cr sorption.

2011 ◽  
Vol 45 (6) ◽  
pp. 2086-2092 ◽  
Author(s):  
Yoko S. Shimamoto ◽  
Yoshio Takahashi ◽  
Yasuko Terada

1963 ◽  
Vol 41 (6) ◽  
pp. 1525-1530 ◽  
Author(s):  
H. R. Allcock

The kinetics of alkaline cleavage of o-nitrobenzyltrimethylsilane were examined in aqueous dioxane media. At high water concentrations, increases in solvent polarity retard the cleavage, as required by a mechanism involving charge dispersion in the transition state. At high dioxane concentrations, solvent polarity increases are accompanied by increases in the rate of reaction, a result which may reflect association between the solvent components.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 133 ◽  
Author(s):  
Saskia Keesstra ◽  
Gerben Mol ◽  
Jan de Leeuw ◽  
Joop Okx ◽  
Co Molenaar ◽  
...  

In the effort to achieve the Sustainable Development Goals (SDGs) related to food, health, water, and climate, an increase in pressure on land is highly likely. To avoid further land degradation and promote land restoration, multifunctional use of land is needed within the boundaries of the soil-water system. In addition, awareness-raising, a change in stakeholders’ attitudes, and a change in economics are essential. The attainment of a balance between the economy, society, and the biosphere calls for a holistic approach. In this paper, we introduce four concepts that we consider to be conducive to realizing LDN in a more integrated way: systems thinking, connectivity, nature-based solutions, and regenerative economics. We illustrate the application of these concepts through three examples in agricultural settings. Systems thinking lies at the base of the three others, stressing feedback loops but also delayed responses. Their simultaneous use will result in more robust solutions, which are sustainable from an environmental, societal, and economic point of view. Solutions also need to take into account the level of scale (global, national, regional, local), stakeholders’ interests and culture, and the availability and boundaries of financial and natural capital. Furthermore, sustainable solutions need to embed short-term management in long-term landscape planning. In conclusion, paradigm shifts are needed. First, it is necessary to move from excessive exploitation in combination with environmental protection, to sustainable use and management of the soil-water system. To accomplish this, new business models in robust economic systems are needed based on environmental systems thinking; an approach that integrates environmental, social, and economic interests. Second, it is necessary to shift from a “system follows function” approach towards a “function follows system” one. Only by making the transition towards integrated solutions based on a socio-economical-ecological systems analysis, using concepts such as nature-based solutions, do we stand a chance to achieve Land Degradation Neutrality by 2030. To make these paradigm shifts, awareness-raising in relation to a different type of governance, economy and landscape and land-use planning and management is needed.


2018 ◽  
Vol 106 (2) ◽  
pp. 147-160
Author(s):  
Seeun Chang ◽  
Wooyong Um ◽  
Won-Seok Kim ◽  
HyunJu Kim

Abstract Batch sorption and column experiments were conducted to investigate and compare sorption and transport behavior of 90Sr on the assumption of seawater intrusion at nuclear power plants. Batch sorption experiments were carried out on fractured rocks and bedrocks using synthetic groundwater and seawater both spiked with 90Sr. In general, higher 90Sr sorption occurred on fractured rock samples than on bedrocks, because of the presence of weathered secondary minerals (iron oxide and clay) on fractured rock surfaces. However, one particular bedrock sample (WSP-B) which has higher porosity and carbon amount than fractured rock samples also showed the higher 90Sr sorption than its comparable fractured rocks. For all batch sorption studies, 90Sr sorption distribution coefficient, Kd decreased from groundwater to seawater environment due to the higher ionic strength of seawater (6.4×10−1–7.7×10−1 M) compared to groundwater (4.0×10−3–6.0×10−3 M). The three different ionic strength solutions were used in column experiments, and the results showed that transport behavior of Sr through a fractured rock had similar sorption trend to batch sorption results. The highest mobility (or least retardation) for Sr was found for 100% seawater solution compared to the highest retardation (or least mobility) for 100% groundwater solution. These sorption and transport data of Sr on solid materials contacted with various ionic strength solutions corroborate empirically defensible information for assessment of radioactive contamination in groundwater below the NPP sites located nearby shores. In addition, the experimental data will be incorporated to improve transport models of 90Sr in the subsurface environment for severe nuclear accidents.


DYNA ◽  
2015 ◽  
Vol 82 (191) ◽  
pp. 183-193 ◽  
Author(s):  
Jorge Virgilio Rivera Gutiérrez

The study is based on the determination of the kinetic rates and assessment of self-purification of the Frio River, due to the uptake of organic load. The kinetic rates were calculated by applying differential and logarithmic methods on concentrations of water quality determinants present in each of the (7) reach of the river. The water system easily recovers the amount of oxygen, k<sub>d</sub>= 0.4, k<sub>a</sub> 3.2 d<sup>-1</sup>, only receives 27.7 Ton. d<sup>-1</sup>, the organic load, making high concentrations of carbon, ammonium and remain sediment. The length Influence of discharges, LIV- BOD yielded a mean per tranche of 10 km, compared to 3 km each way, means that the river can´t self- purification that need more length of travel. The study illustrates the modeling of the determinants of quality, developed by the QUAL2K, using the calculated rates.


Author(s):  
P. Kumarathilaka ◽  
J. Bundschuh ◽  
S. Seneweera ◽  
A.A. Meharg

Sign in / Sign up

Export Citation Format

Share Document