Zooplankton dynamic of Lake Prespa (Macedonia)

Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Dafina Guseska ◽  
Orhideja Tasevska ◽  
Goce Kostoski

AbstractThe composition and temporal abundance patterns of zooplankton community in Lake Prespa pelagic zone were studied throughout an annual cycle (October 2008–September 2009). Eighteen species (10 Rotifera, 5 Cladocera, 2 Copepoda, 1 Mollusca) were evidenced. It includes Arctodiaptomus steindachneri, an endemic calanoid of the Western Balkans. The zooplankton density varied during the investigated period and certain seasonal successions in temporal transpositions of their maximal development were noticed. The total zooplankton density was much higher in spring and summer period. The representatives of subclass Copepoda were dominant during the whole year. The dominant species was A. steindachneri. At the second place (with exception of the winter period) were the Cladocera representatives. The dominant species was Daphnia cucullata. At the third and fourth place were rotifers and larval form of Dreissena polymorpha, respectively. The quantitative presence of the Copepoda representatives was significantly lower in terms of the previous investigations. The Cladocera quantity reached high values during this period, particularly in summer. Such altering in the quantitative ratio between Copepoda and Cladocera in favor of the Cladocera, especially high quantitative presence of D. cucullata, typical for eutrophic lakes, imply of significant changes in zooplankton community and changes of the water quality in Lake Prespa pelagial.

2004 ◽  
Vol 5 (1) ◽  
pp. 19 ◽  
Author(s):  
G. KEHAYIAS ◽  
E. MICHALOUDI ◽  
A. BEXI

In Lake Trichonis 9 crustacea species and the molluscan larvae of Dreissena polymorpha were recorded during four seasonal samplings from summer 2002 to spring 2003. Mean integrated values of crustacea abundance ranged from 4.5 to 12.9 ind/L and were mainly dominated by the calanoida Eudiaptomus drieschi. The abundance values recorded, as well as the seasonal dynamics, followed the monoacmic pattern of oligotrophic lakes. However, the presence of Daphnia cucullata, a typical representative of eutrophic lakes, the decrease of the calanoida participation in the crustacea community and the succession in the cladocera community, could probably indicate a tendency towards a change of the trophic condition of Lake Trichonis.Along the vertical axis the maximum abundance of the zooplankton community was recorded in the surface 0-10 m. Mollusca larvae were present in all seasons and their highest abundance was recorded in the surface layer 0-10 m. Temperature, competition and predation seemed to be the main factors regulating vertical distribution.


1980 ◽  
Vol 37 (3) ◽  
pp. 403-414 ◽  
Author(s):  
J. S. Marshall ◽  
D. L. Mellinger

Structural and functional responses of plankton communities to cadmium stress were studied during 1977 in Lake Michigan using small-volume (8 L) completely sealed enclosures, and in Canada's Experimental Lakes Area (ELA) Lake 223 using large-volume (1.5 × 105 L) open-surface enclosures. In Lake Michigan, reductions of the average abundance of micro-crustaceans by cadmium were significantly greater in "light" or shallow epilimnetic incubations than they were in "dark" or deep epilimnetic incubations. Measurements of dissolved oxygen indicated that this interaction with light (depth) was an indirect effect due to a reduction of photosynthesis and primary production. Zooplankton density and species diversity were not significantly affected within 21 d by cadmium concentrations [Formula: see text] and [Formula: see text] Cd/L, respectively, whereas final dissolved oxygen concentration and percentage similarity (PS) of the crustacean zooplankton community were significantly reduced by [Formula: see text] Cd/L. In the ELA Lake 223 experiment, the reducing effect of cadmium on zooplankton density increased up to 31 d after Cd enrichment and then decreased, probably due to decreasing Cd concentrations in the water. Values of PS on day 24 for the ELA enclosures enriched with 1 and 3 μg Cd/L were within the 95% confidence limits for individual values predicted from a regression of PS on cadmium for the 21-d Lake Michigan experiments.Key words: plankton communities, zooplankton, phytoplankton, cadmium stress, Lake Michigan, Canadian Shield lakes


1997 ◽  
Vol 54 (8) ◽  
pp. 1903-1915 ◽  
Author(s):  
S A Thayer ◽  
R C Haas ◽  
R D Hunter ◽  
R H Kushler

Zebra mussels (Dreissena polymorpha) in enclosures located in an experimental pond adjacent to Lake St. Clair, Michigan, increased sedimentation rate but had relatively minor effects on percent organic matter and percent nitrogen content of sediment. In contrast, sediment from Lake St. Clair adjacent to zebra mussels was significantly higher in carbon than that 0.5 m away. Zebra mussels increase the nutritional value of surficial sediment and provide greater structural heterogeneity, which is probably more important in causing change among zoobenthos. Zoobenthos and yellow perch (Perca flavescens) diet were dominated by dipteran larvae and leeches. Zoobenthos was significantly different between enclosures with and without zebra mussels. Treatments with zebra mussels had significantly more oligochaetes and tended to have more crustaceans (isopods and amphipods). In June, yellow perch without zebra mussels consumed significantly more zooplankton, and those with mussels had more crustaceans in their diet. Zooplankton density was greater in treatments without zebra mussels. Yellow perch with zebra mussels grew significantly more than those without mussels. Zebra mussels in the enclosures neither reproduced nor were eaten by yellow perch; hence. the observed growth differences were due to indirect effects involving zebra mussel induced changes in benthic structure and biota.


2013 ◽  
Vol 14 (3) ◽  
pp. 32 ◽  
Author(s):  
E. CHALKIA ◽  
G. KEHAYIAS

A one year investigation of the zooplankton community composition and dynamics in Lake Οzeros (western Greece) revealed 25 invertebrate species (16 rotifers, three copepods, five cladocerans and one mollusc larva). The mean zooplankton abundance fluctuated between 59.4 to 818 ind l-1, having maximum values in spring. The species composition and seasonal variation do not differentiate Lake Ozeros from the nearby lakes. The presence of the dominant calanoid copepod Eudiaptomus drieschi and some of the rotifer species recorded are characteristics of either oligo- or eutrophic lakes. According to the trophic state index (TSI) Lake Ozeros is a meso-eutrophic ecosystem, in which the eutrophic character was possibly the result of the high charge with phosphorus (being raised by 28.9 % in comparison to previous decades), which came into the lake via the surrounding agricultural cultivations and mainly the pig-raising activities. In contrast, the concentrations of ΝΟ3, ΝΟ2 and NH4 have considerably decreased possibly due to the termination of the tobacco cultivations around the lake during the last years. The novel information on the abiotic and especially the biotic elements of Lake Ozeros provided by the present study can contribute to the effective management of this aquatic ecosystem in the future.


1983 ◽  
Vol 40 (10) ◽  
pp. 1813-1819 ◽  
Author(s):  
J. S. Bays ◽  
T. L. Crisman

Zooplankton, including ciliated protozoans, were collected from 39 Florida lakes of widely ranging trophic state. Annual mean biomass values for different zooplankton groups were regressed against Carlson's Trophic State Index based on annual mean chlorophyll a concentration. Whereas total zooplankton biomass yielded a significant regression with increasing trophic state, microzooplankton (ciliates, rotifers, and nauplii) accounted for more of the relationship than macrozooplankton (cladocera, calanoids, and cyclopoids). Within the microzooplankton, the regression improved with decreasing body size. Macrozooplankton biomass exhibited a weak statistical relationship with lake trophic state, but the different component groups were variable in their response. The dominance within the zooplankton community shifts from macrozooplankton to microzooplankton with increasing trophic state, and the microzooplankton can constitute between 50 and 90% of the total zooplankton biomass in eutrophic lakes. Changes in zooplanktivore community structure with increasing trophic state show that whereas total fish biomass increases, dominance shifts from visually oriented predators, such as bass and bluegill, to pump filter-feeding planktivores, such as gizzard shad (Dorosoma cepedianum). While Florida zooplankton communities are similar in size structure to tropical communities, no statistically significant differences were found between empirical equations of crustacean zooplankton biomass and trophic state determined from temperate and Florida data bases.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 644
Author(s):  
Nattaporn Plangklang ◽  
Sujeephon Athibai

Herbicide usage in rice fields over time may have a direct and indirect influence on the biodiversity of the fields. The impacts of herbicide usage on non-target organisms were assessed by examining the species richness and zooplankton density of two rice fields. One was 2.08 hectares in size and had been treated with pesticides during the sampling year (RF-PA). The second field, measuring 1.76 hectares, had received no pesticide treatment (RF-NPA). Every two weeks, zooplankton was quantitatively collected from ten sampling sites in each field. At each station, 20 L of measured water was filtered through a plankton net with a mesh size of 20 µm and preserved in 1% Lugol’s solution. The results revealed that RF-NPA and RF-PA had 112 and 88 species of zooplankton, respectively, with an abundance-based Jaccard index (Jabd) of 0.438. The total zooplankton density in RF-NPA was 24.4 ind./L, significantly higher than the 16.6 ind./L in RF-PA (p < 0.001). The Shannon-Wiener diversity index (H’) and evenness (J) were highest in RF-NPA at the second sampling (3.45 and 0.75, respectively). These results indicate that glyphosate application affects the diversity of species and density of zooplankton in rice fields.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 353-361 ◽  
Author(s):  
B. Pinel-Alloul

Excessive concentrations of phosphorus are a common feature of hardwater eutrophic lakes in western Canada. Preliminary experimental lime treatment showed that this approach had a great potential to reduce phosphorus content and algal biomass. Therefore, two pairs of experimental and reference lakes were selected for a whole lake lime treatment and monitored for a full year prior to manipulation. This study presents the composition and size structure of the Zooplankton community of the lakes before treatment in order to assess the natural summer and inter-lake variations. Before lime treatment, seasonal means of total Zooplankton abundance and biomass ranged from 17 ± 8 to 127 ± 84 ind. L−1 and from 4 ± 2 to 138 ± 236 mg m−3, respectively. The two experimental lakes (Halftnoon and Lofty) were the richest in Zooplankton while the references lakes (Crooked and Jenkins) were the poorest. A total of 30 Zooplankton species (17 rotifers, 2 calanoids, 4 cyclopoids and 7 cladocerans) were recorded as well as 3 chaoborid species. The composition and size structure of Zooplankton varied between lakes and dates. Rotifers accounted for the majority of Zooplankton abundances (59-91%) while Cladocera (78-99%) or Copepoda (74%) in Crooked lake formed most of the Zooplankton biomass. Summer variations of the Zooplankton groups were described along with changes in size spectra. The temporal variation and the inter-lake differences in Zooplankton structure were discussed in relation to trophy, fish and invertebrate predation, and cyanophyte interactions.


Biologia ◽  
2012 ◽  
Vol 67 (1) ◽  
Author(s):  
Ekaterini Chalkia ◽  
Ierotheos Zacharias ◽  
Anna-Akrivi Thomatou ◽  
George Kehayias

AbstractZooplankton species composition and abundance variation was studied in Lake Amvrakia, which is a deep, temperate, gypsum karst lake situated in the western Greece. The two year survey of zooplankton revealed 33 species (23 rotifers, five cladocerans, four copepods and one mollusc larva). The mean integrated abundance of the total zooplankton ranged between 83.6 and 442.7 ind. L−1, with the higher density to be recorded in the surface 0–20 m layer. Small numbers of specimens of almost all species were found also in the hypoxic or anoxic hypolimnion. Copepods and especially the calanoid Eudiaptomus drieschi dominated the zooplankton community throughout the sampling period, followed by Dreissena polymorpha larvae, rotifers and cladocerans. Seasonal succession among the cladocerans and the most abundant rotifer species was observed. The concentration of chlorophyll-a was the most important factor for the variation of total zooplankton, as well as for the rotifers’ community. Dissolved oxygen affected copepods and cladocerans, water level correlated mainly with the molluscs larvae of D. polymorpha, while temperature influenced the variation of several rotifers, the cladoceran Diaphanosoma orghidani and the mollusc larvae. Negative correlation of conductivity with the cladoceran Daphnia cucullata and the copepods E. drieschi and Macrocyclops albidus was found. The differences in species composition found in Lake Amvrakia in comparison to the nearby lakes are probably ought to the geographical isolation and perhaps to its particular chemistry (e.g., elevated conductivity).


Author(s):  
Jong-Yun Choi ◽  
Kwang-Seuk Jeong ◽  
Seong-Ki Kim ◽  
Gea-Jae Joo

AbstractMacrophytes play a major role in the structuring of aquatic environments, and create diverse microhabitats. Therefore, these plants represent an important factor regulating the zooplankton biomass, taxonomic composition, and distribution in freshwater ecosystems. In the current study, we examined the effects of the structural heterogeneity provided by various macrophytes. We identified four habitat types in this study: (1) open water (without macrophytes), (2) the helophyte zone, (3) the pleustophyte zone, and (4) the mixed vegetation zone (containing pleustophytes, nymphaeids, and elodeids). We tested the hypothesis that complex habitat structures support large zooplankton assemblages. Specifically, we collected zooplankton samples from a total of 119 sampling points in the Upo Wetlands, South Korea, during the spring and autumn of 2009. The largest zooplankton assemblage was found in the mixed macrophyte zone, followed by the helophyte and pleustophyte zones. The pleustophyte zone supported larger zooplankton assemblages during autumn compared to spring. Differences in zooplankton assemblages were considered to be strongly related to seasonal variation in the development and growth of pleustophytes. However, two-way ANOVA revealed that seasons had no significant influence on the zooplankton density and diversity. Instead, different habitat types substantially determined zooplankton characteristics. In conclusion, we demonstrated that wetland areas with high macrophyte species diversity contribute toward higher zooplankton diversity.


2003 ◽  
Vol 60 (11) ◽  
pp. 1353-1368 ◽  
Author(s):  
Erik G Noonburg ◽  
Brian J Shuter ◽  
Peter A Abrams

The exotic zebra mussel (Dreissena polymorpha) has caused dramatic reductions in phytoplankton density in lakes with dense mussel populations. However, the indirect effects of this invader on other trophic groups have been inconsistent and difficult to interpret. In some lakes, zebra mussels appear to have had little effect on zooplankton density, despite decreasing the abundance of their phytoplankton prey. We analyze food web models to test hypothesized mechanisms for the absence of a strong effect of dreissenids on zooplankton. Our results suggest that neither reduced inedible algal interference with zooplankton filtering nor reduced phytoplankton self-shading is sufficient to explain the insensitivity of zooplankton populations to dreissenid competition. Instead, we show how the impact of benthic filter feeders can be influenced by the rate of mixing within a basin, which limits phytoplankton delivery to the benthos. We explore the predictions of a simple spatially structured model and demonstrate that differences in abiotic factors that control mixing can result in large differences in direct and indirect effects of zebra mussel filtering.


Sign in / Sign up

Export Citation Format

Share Document