Optical optimization of organic solar cell with bulk heterojunction

2014 ◽  
Vol 22 (2) ◽  
Author(s):  
E. Gondek

AbstractThe work is devoted to the optimization of layer thickness in an organic photovoltaic cell. It presents the applied calculation method which is based on the optical transfer matrix 2×2 formalism. We present the influence of thickness of a PEDOT:PSS layer and of an active layer on the normalized modulus squared of optical electric fields distribution inside devices and on the distributions of exciton generation rate. We present the relationship between optimal thicknesses of the PEDOT:PSS layer and the active layer. We also present the influence of antireflection coating on distributions of optical electrical fields, as well as the distributions of exciton generation rate. Perpendicular and oblique illumination of the photovoltaic structure is discussed.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Paik-Kyun Shin ◽  
Palanisamy Kumar ◽  
Abhirami Kumar ◽  
Santhakumar Kannappan ◽  
Shizuyasu Ochiai

Bulk heterojunction (BHJ) structure based active layers of PCDTBT/PC71BM were prepared by using different organic solvents for fabrication of organic solar cell (OSC) devices. Mixture of precursor solutions of PCDTBT/PC71BM in three different organic solvents was prepared to fabricate composite active layers by spin-coating process: chloroform; chlorobenzene; o-dichlorobenzene. Four different blend ratios (1 : 3–1 : 6) of PCDTBT: PC71BM were adopted for each organic solvent to clarify the effect on the resulting OSC device characteristics. Surface morphology of the active layers was distinctively affected by the blend ratio of PCDTBT/PC71BM in organic solvents. Influence of the blend ratio of PCDTBT/PC71BM on the OSC device parameters was discussed. Performance parameters of the resulting OSC devices with different composite active layers were comparatively investigated. Appropriate blend ratio and organic solvent to achieve better OSC device performance were proposed. Furthermore, from the UV-Vis spectrum of each active layer prepared using the PCDTBT/PC71BM mixed solution dissolved with different organic solvents, a possibility that the nanophase separation structure inside their active layer could appear was suggested.


2011 ◽  
Vol 396-398 ◽  
pp. 2471-2475
Author(s):  
Ji Gang Wang ◽  
Yong Sheng Wang ◽  
Da Wei He ◽  
Hong Peng Wu ◽  
Hai Teng Wang ◽  
...  

The poly (2-methoxy-5-(2-ethylhexyl oxy)-1, 4-phenylenevin- ylene) (MEH-PPV) was used as a secondary electron donor material in the poly (3-octylthiophene) (P3OT): graphene bulk-heterojunction photovoltaic cell. The XRD investigation of the active layer showed a well-organized intraplane structure with lamellae oriented normal to the substrate. The mechanism of charge transfer in the multi-donor PV cell was investigated; it shows that efficient energy transfer takes place from MEH-PPV to P3OT. The reason for the increase in the open-circuit voltage which dues to the band structure of BHJ where the energy level change of the highest occupied molecular orbital of the MEH-PPV: P3OT as multi-donor. The hybrid devices showed the energy conversion efficiency of the multi-donor BHJ solar devices with moderate amount of MEH-PPV. The surface roughness investigation indicated the morphology of the hybrid active layer film.


2015 ◽  
Vol 1737 ◽  
Author(s):  
Francisco Martinez ◽  
Gloria Neculqueo ◽  
Sergio O. Vasquez ◽  
Helge Lemmetyinen ◽  
Alexander Efimov ◽  
...  

ABSTRACTThiophene small novel branched structures have been proposed as candidates for dopant agents transporting holes-electron in organic solar cell (OSC). Low-band gap of these branched oligotiophene have been obtained to be used in organic solar cells. Two branched thiophene oligomers, a sexithienylene vinylene (E)-Bis-1,2-(5,5´´-Dimethyl-(2,2´:3´,2´´-terthiophene) vinylene, (BSTV) and octathienylene vinylene (BOTV) (E)-Bis-1,2-(5,5´´´-Dimethyl-(2,2´:5´,2´´:3´,2´´´-tetrathiophene) vinylene oligomers, have been synthesized and used as electron donor or dopant in a bulk heterojunction poly(3-hexylthiophene) (P3HT), /[6,6]-phenyl C61-butyric acid methylester (PCBM), Organic Photovoltaic cell.


2012 ◽  
Vol 16 (09) ◽  
pp. 1059-1067 ◽  
Author(s):  
Shahid M. Khan ◽  
Muhammad H. Sayyad

The opto-electronic characteristics of porphyrin-fullerene bulk heterojunction photovoltaic cells of different active layer thicknesses were studied. In order to achieve different active layer thicknesses, the photovoltaic cells were prepared by spin coating the active layer of each cell at a different spin speed. To determine the active layer thickness, average of absorption coefficients of the materials constituting the active layer was used along with the optical density. Active layer thicknesses were also measured by using surface profilometer. Atomic force microscope surface scans revealed that there was no considerable change in active layer surface roughness from 1000 to 1500 rpm. However, a decrease in average grain size with increasing spin speed was observed. Current density as a function of voltage curves at different active layer thicknesses were recorded in dark and under a simulated solar spectrum AM 1.5G (100 mW.cm-2). Incident photon-to-current conversion efficiency spectra at different active layer thicknesses were also determined. The solar cell having active layer thickness of 68 nm (spin coated at 1200 rpm) showed optimum results. The power conversion efficiency of the photovoltaic cell at this thickness was 0.24%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 209
Author(s):  
Kiran Sreedhar Ram ◽  
Hooman Mehdizadeh-Rad ◽  
David Ompong ◽  
Daniel Setsoafia ◽  
Jai Singh

In this paper, characterisation of exciton generation is carried out in three bulk-heterojunction organic solar cells (BHJ OSCs)—OSC1: an inverted non-fullerene (NF) BHJ OSC; OSC2: a conventional NF BHJ OSC; and OSC3: a conventional fullerene BHJ OSC. It is found that the overlap of the regions of strong constructive interference of incident and reflected electric fields of electromagnetic waves and those of high photon absorption within the active layer depends on the active layer thickness. An optimal thickness of the active layer can thus be obtained at which this overlap is maximum. We have simulated the rates of total exciton generation and position dependent exciton generation within the active layer as a function of the thicknesses of all the layers in all three OSCs and optimised their structures. Based on our simulated results, the inverted NF BHJ OSC1 is found to have better short circuit current density which may lead to better photovoltaic performance than the other two. It is expected that the results of this paper may provide guidance in fabricating highly efficient and cost effective BHJ OSCs.


2014 ◽  
Vol 104 (1) ◽  
pp. 013306 ◽  
Author(s):  
Xiangyu Chen ◽  
Dai Taguchi ◽  
Takaaki Manaka ◽  
Mitsumasa Iwamoto

Sign in / Sign up

Export Citation Format

Share Document