scholarly journals Damage progression from impact in layered glass modeled with peridynamics

2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Florin Bobaru ◽  
Youn Ha ◽  
Wenke Hu

AbstractDynamic fracture in brittle materials has been difficult to model and predict. Interfaces, such as those present in multi-layered glass systems, further complicate this problem. In this paper we use a simplified peridynamic model of a multi-layer glass system to simulate damage evolution under impact with a high-velocity projectile. The simulation results are compared with results from recently published experiments. Many of the damage morphologies reported in the experiments are captured by the peridynamic results. Some finer details seen in experiments and not replicated by the computational model due to limitations in available computational resources that limited the spatial resolution of the model, and to the simple contact conditions between the layers instead of the polyurethane bonding used in the experiments. The peridynamic model uncovers a fascinating time-evolution of damage and the dynamic interaction between the stress waves, propagating cracks, interfaces, and bending deformations, in three-dimensions.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangmo Kang ◽  
Da-Eun Kim ◽  
Kuk-Kyeom Kim ◽  
Jun-Oh Kim

We have performed a shape optimization of the disc in an industrial double-eccentric butterfly valve using the effect analysis of design variables to enhance the valve performance. For the optimization, we select three performance quantities such as pressure drop, maximum stress, and mass (weight) as the responses and three dimensions regarding the disc shape as the design variables. Subsequently, we compose a layout of orthogonal array (L16) by performing numerical simulations on the flow and structure using a commercial package, ANSYS v13.0, and then make an effect analysis of the design variables on the responses using the design of experiments. Finally, we formulate a multiobjective function consisting of the three responses and then propose an optimal combination of the design variables to maximize the valve performance. Simulation results show that the disc thickness makes the most significant effect on the performance and the optimal design provides better performance than the initial design.


2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.


Author(s):  
M. Nishio ◽  
M. Mori

These The present study aims to simulate the hydrologic processes of a flood, based on a new, highly accurate Digital Elevation Model (DEM). The DEM is provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan, and has a spatial resolution of five meters. It was generated by the new National Project in 2012. The Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS) is used to simulate the hydrologic process of a flood of the Onga River in Iizuka City, Japan. A large flood event in the typhoon season in 2003 caused serious damage around the Iizuka City area. Precise records of rainfall data from the Automated Meteorological Data Acquisition System (AMeDAS) were input into the HEC-HMS. The estimated flood area of the simulation results by HEC-HMS was identical to the observed flood area. A watershed aggregation map is also generated by HEC-HMS around the Onga River.


Author(s):  
Annette Volk ◽  
Urmila Ghia

Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) simulations are designed to model a pseudo-two-dimensional fluidized bed. Bed behavior and accuracy of results are shown to change as the simulations are conducted on increasingly refined computational grids. Trends of the results with grid refinement are reported for both three-dimensional, uniform refinement, and for grid refinement in only the direction of bed thickness. Pseudo-2D simulation results are examined against previously published experimental data to assess relative accuracy compared to fully 3D simulation results. Two drag laws are employed in the simulations, resulting in different trends of results with computational grid refinement. From these results, we present suggestions for accurate model design.


2017 ◽  
Author(s):  
Yuehang Wang ◽  
Depeng Wang ◽  
Yumiao Zhang ◽  
Jumin Geng ◽  
Ryan Hubbell ◽  
...  

Author(s):  
Leigh Orf

Since the dawn of the digital computing age in the mid-20th century, computers have been used as virtual laboratories for the study of atmospheric phenomena. The first simulations of thunderstorms captured only their gross features, yet required the most advanced computing hardware of the time. The following decades saw exponential growth in computational power that was, and continues to be, exploited by scientists seeking to answer fundamental questions about the internal workings of thunderstorms, the most devastating of which cause substantial loss of life and property throughout the world every year. By the mid-1970s, the most powerful computers available to scientists contained, for the first time, enough memory and computing power to represent the atmosphere containing a thunderstorm in three dimensions. Prior to this time, thunderstorms were represented primarily in two dimensions, which implicitly assumed an infinitely long cloud in the missing dimension. These earliest state-of-the-art, fully three-dimensional simulations revealed fundamental properties of thunderstorms, such as the structure of updrafts and downdrafts and the evolution of precipitation, while still only roughly approximating the flow of an actual storm due computing limitations. In the decades that followed these pioneering three-dimensional thunderstorm simulations, new modeling approaches were developed that included more accurate ways of representing winds, temperature, pressure, friction, and the complex microphysical processes involving solid, liquid, and gaseous forms of water within the storm. Further, these models also were able to be run at a resolution higher than that of previous studies due to the steady growth of available computational resources described by Moore’s law, which observed that computing power doubled roughly every two years. The resolution of thunderstorm models was able to be increased to the point where features on the order of a couple hundred meters could be resolved, allowing small but intense features such as downbursts and tornadoes to be simulated within the parent thunderstorm. As model resolution increased further, so did the amount of data produced by the models, which presented a significant challenge to scientists trying to compare their simulated thunderstorms to observed thunderstorms. Visualization and analysis software was developed and refined in tandem with improved modeling and computing hardware, allowing the simulated data to be brought to life and allowing direct comparison to observed storms. In 2019, the highest resolution simulations of violent thunderstorms are able to capture processes such as tornado formation and evolution which are found to include the aggregation of many small, weak vortices with diameters of dozens of meters, features which simply cannot not be simulated at lower resolution.


Author(s):  
Congmin Li ◽  
Weijian Jiang ◽  
Jie Cheng ◽  
Zongxin Yu ◽  
Zhiguo Zhang

Due to the combination of the forward speed and the prevailing wind for surface ship traveling in the ocean, the airflow passing over the ship’s superstructure causes the formation of a disturbed flow region and the large speed gradients of the mean wind over the flight deck, known as the ship airwake. This airwake would cause significant influence on the performance of the helicopter rotor during its taking off or landing, increase the operation workload of the pilot and even cause safe-landing issues, especially when the wind sweeps over the deck. This paper presents a numerical simulation of flow across the ship superstructure using DES and LES turbulent model. The ship model used for simulation is the standard SF2 surface ship model with experimental measurement data which could be used for the CFD code validation. The simulation results are compared with the experimental measurement data, and the comparison with experimental results shows good match for both DES and LES turbulent models. Simulation results show that a series of vortex had been generated after the flow separation with asymmetric characteristics. From upstream to downstream, the vortex intensity decreases, but suddenly increases after encountering the chimney. The comparison between DES and LES turbulent models shows the similar flow field and vortex structure around the ship superstructure with same grid sets. Both DES and LES are superior to RANS in solving ship airwake. The comparisons of DES and LES turbulent models show that DES can reflect the separated flow with limited computational resource and LES simulation could get higher resolution of the fluid flow structure with enough computational resources.


Author(s):  
Sung Pil Jung ◽  
Tae Won Park ◽  
Jin Hee Lee

This study aims to create a numerical analysis model which can investigate the interaction between pantograph and overhead contact line used for railway vehicles, and validate the simulation results according to EN 50318 standards. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program, and mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the reliability of SAMCEF as an analysis solver of railway vehicle’s catenary system is discussed.


Author(s):  
Jaewon Choi ◽  
D. Christian Grieshaber ◽  
Thomas J. Armstrong

A 3-dimensional kinematic model of the hand was developed. The model predicts hand posture using a simple contact algorithm, which detects a contact between hand segments and the object. Using the 3-dimensional kinematic model of the hand, we estimated grasp envelopes because the space requirement for a specific task is an important aspect to be considered in the task's design stage. For this purpose, two hose insertion methods – a straight method and a rotation method – were simulated. The simulation results were compared favorably with the experimental studies by the previous researches. The model can be used to estimate grasp envelopes for varying hand sizes, object sizes, object shapes, and grip types. The model gives useful and practical information about the grasp envelope to the engineers who design parts or work space.


2021 ◽  
Vol 17 (4) ◽  
pp. 1685-1699
Author(s):  
Marcus Breil ◽  
Emanuel Christner ◽  
Alexandre Cauquoin ◽  
Martin Werner ◽  
Melanie Karremann ◽  
...  

Abstract. In order to investigate the impact of spatial resolution on the discrepancy between simulated δ18O and observed δ18O in Greenland ice cores, regional climate simulations are performed with the isotope-enabled regional climate model (RCM) COSMO_iso. For this purpose, isotope-enabled general circulation model (GCM) simulations with the ECHAM5-wiso general circulation model (GCM) under present-day conditions and the MPI-ESM-wiso GCM under mid-Holocene conditions are dynamically downscaled with COSMO_iso for the Arctic region. The capability of COSMO_iso to reproduce observed isotopic ratios in Greenland ice cores for these two periods is investigated by comparing the simulation results to measured δ18O ratios from snow pit samples, Global Network of Isotopes in Precipitation (GNIP) stations and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a dynamical downscaling of ECHAM5-wiso (1.1∘×1.1∘) with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 14 of 19 observational data sets. A further increase in the spatial resolution to 7 km does not yield substantial improvements except for the coastal areas with its complex terrain. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. In the mid-Holocene, MPI-ESM-wiso already agrees well with observations in Greenland and a downscaling with COSMO_iso does not further improve the model–data agreement. Despite this lack of improvement in model biases, the study shows that in both periods, observed δ18O values at measurement sites constitute isotope ratios which are mainly within the subgrid-scale variability of the global ECHAM5-wiso and MPI-ESM-wiso simulation results. The correct δ18O ratios are consequently not resolved in the GCM simulation results and need to be extracted by a refinement with an RCM. In this context, the RCM simulations provide a spatial δ18O distribution by which the effects of local uncertainties can be taken into account in the comparison between point measurements and model outputs. Thus, an isotope-enabled GCM–RCM model chain with realistically implemented fractionating processes constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in other regions and climate periods, in which large deviations relative to observed isotope ratios are simulated.


Sign in / Sign up

Export Citation Format

Share Document