scholarly journals Effect Analysis of Design Variables on the Disc in a Double-Eccentric Butterfly Valve

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangmo Kang ◽  
Da-Eun Kim ◽  
Kuk-Kyeom Kim ◽  
Jun-Oh Kim

We have performed a shape optimization of the disc in an industrial double-eccentric butterfly valve using the effect analysis of design variables to enhance the valve performance. For the optimization, we select three performance quantities such as pressure drop, maximum stress, and mass (weight) as the responses and three dimensions regarding the disc shape as the design variables. Subsequently, we compose a layout of orthogonal array (L16) by performing numerical simulations on the flow and structure using a commercial package, ANSYS v13.0, and then make an effect analysis of the design variables on the responses using the design of experiments. Finally, we formulate a multiobjective function consisting of the three responses and then propose an optimal combination of the design variables to maximize the valve performance. Simulation results show that the disc thickness makes the most significant effect on the performance and the optimal design provides better performance than the initial design.

2009 ◽  
Vol 08 (01) ◽  
pp. 81-88 ◽  
Author(s):  
XUE GUAN SONG ◽  
LIN WANG ◽  
YOUNG CHUL PARK

A butterfly valve of large diameter is commonly used as control equipments in applications where the inlet velocity is fast and the pressure is relatively high. Because the size of the valve is too large, it's too difficult to conduct testing experiment in a laboratory. In this paper, the numerical simulation using commercial package-CFX and ANSYS was conducted. In order to perform fluid analysis and structural analysis perfectly, large valve models are generated in three dimensions without much simplification. The result of fluid analysis is imported to structure analysis as a boundary condition. In addition, to describe the flow patterns and to measure the performance when valve are opened for various angles, the verification of the performance whether the valve could work safely at these different conditions or not was conducted. Fortunately, the result shows that the valve is safe in a given inlet velocity of 3 m/s, and it's not necessary to be strengthened anywhere. In the future, the shape of valve disc can be optimized to reduce the weight, and also to make the flow coefficient be closer to the suggested level.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 750
Author(s):  
Jun-Hao Lee ◽  
Pin-Kuan Li ◽  
Hai-Wen Hung ◽  
Wallace Chuang ◽  
Eckart Schellkes ◽  
...  

This study employed finite element analysis to simulate ultrasonic metal bump direct bonding. The stress distribution on bonding interfaces in metal bump arrays made of Al, Cu, and Ni/Pd/Au was simulated by adjusting geometrical parameters of the bumps, including the shape, size, and height; the bonding was performed with ultrasonic vibration with a frequency of 35 kHz under a force of 200 N, temperature of 200 °C, and duration of 5 s. The simulation results revealed that the maximum stress of square bumps was greater than that of round bumps. The maximum stress of little square bumps was at least 15% greater than those of little round bumps and big round bumps. An experimental demonstration was performed in which bumps were created on Si chips through Al sputtering and lithography processes. Subtractive lithography etching was the only effective process for the bonding of bumps, and Ar plasma treatment magnified the joint strength. The actual joint shear strength was positively proportional to the simulated maximum stress. Specifically, the shear strength reached 44.6 MPa in the case of ultrasonic bonding for the little Al square bumps.


Author(s):  
Ameya K. Naik ◽  
Raghunath S. Holambe

An outline is presented for construction of wavelet filters with compact support. Our approach does not require any extensive simulations for obtaining the values of design variables like other methods. A unified framework is proposed for designing halfband polynomials with varying vanishing moments. Optimum filter pairs can then be generated by factorization of the halfband polynomial. Although these optimum wavelets have characteristics close to that of CDF 9/7 (Cohen-Daubechies-Feauveau), a compact support may not be guaranteed. Subsequently, we show that by proper choice of design parameters finite wordlength wavelet construction can be achieved. These hardware friendly wavelets are analyzed for their possible applications in image compression and feature extraction. Simulation results show that the designed wavelets give better performances as compared to standard wavelets. Moreover, the designed wavelets can be implemented with significantly reduced hardware as compared to the existing wavelets.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2021 ◽  
Author(s):  
Lun H. Mark

This thesis investigates how geometry of complex objects is related to LIDAR scanning with the Iterative Closest Point (ICP) pose estimation and provides statistical means to assess the pose accuracy. LIDAR scanners have become essential parts of space vision systems for autonomous docking and rendezvous. Principal Componenet Analysis based geometric constraint indices have been found to be strongly related to the pose error norm and the error of each individual degree of freedom. This leads to the development of several strategies for identifying the best view of an object and the optimal combination of localized scanned areas of the object's surface to achieve accurate pose estimation. Also investigated is the possible relation between the ICP pose estimation accuracy and the districution or allocation of the point cloud. The simulation results were validated using point clouds generated by scanning models of Quicksat and a cuboctahedron using Neptec's TriDAR scanner.


2021 ◽  
Author(s):  
Lun H. Mark

This thesis investigates how geometry of complex objects is related to LIDAR scanning with the Iterative Closest Point (ICP) pose estimation and provides statistical means to assess the pose accuracy. LIDAR scanners have become essential parts of space vision systems for autonomous docking and rendezvous. Principal Componenet Analysis based geometric constraint indices have been found to be strongly related to the pose error norm and the error of each individual degree of freedom. This leads to the development of several strategies for identifying the best view of an object and the optimal combination of localized scanned areas of the object's surface to achieve accurate pose estimation. Also investigated is the possible relation between the ICP pose estimation accuracy and the districution or allocation of the point cloud. The simulation results were validated using point clouds generated by scanning models of Quicksat and a cuboctahedron using Neptec's TriDAR scanner.


2015 ◽  
Vol 23 (03) ◽  
pp. 1550020 ◽  
Author(s):  
B. G. Prashantha ◽  
M. S. Govinde Gowda ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham

This paper deals with the basic insight of thermoacoustic refrigeration concepts, and the working principle, history and the role of linear thermoacoustic theory in designing a thermoacoustic refrigerator system are discussed. Resonator design optimization procedure for a 10W cooling power thermoacoustic refrigerators is discussed. The optimized resonator designs proposed in this paper are found to be efficient compared to published resonator designs. The effects of drive ratio on the theoretical performance by varying dynamic pressure amplitude from 0.2 bar to 0.4 bar in the steps of 0.05 bar on the optimized resonator designs are discussed. Performance simulation results for the optimized resonator designs using DeltaEC software are discussed. Simulation results are in agreement with theoretical results.


Author(s):  
Annette Volk ◽  
Urmila Ghia

Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) simulations are designed to model a pseudo-two-dimensional fluidized bed. Bed behavior and accuracy of results are shown to change as the simulations are conducted on increasingly refined computational grids. Trends of the results with grid refinement are reported for both three-dimensional, uniform refinement, and for grid refinement in only the direction of bed thickness. Pseudo-2D simulation results are examined against previously published experimental data to assess relative accuracy compared to fully 3D simulation results. Two drag laws are employed in the simulations, resulting in different trends of results with computational grid refinement. From these results, we present suggestions for accurate model design.


2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Florin Bobaru ◽  
Youn Ha ◽  
Wenke Hu

AbstractDynamic fracture in brittle materials has been difficult to model and predict. Interfaces, such as those present in multi-layered glass systems, further complicate this problem. In this paper we use a simplified peridynamic model of a multi-layer glass system to simulate damage evolution under impact with a high-velocity projectile. The simulation results are compared with results from recently published experiments. Many of the damage morphologies reported in the experiments are captured by the peridynamic results. Some finer details seen in experiments and not replicated by the computational model due to limitations in available computational resources that limited the spatial resolution of the model, and to the simple contact conditions between the layers instead of the polyurethane bonding used in the experiments. The peridynamic model uncovers a fascinating time-evolution of damage and the dynamic interaction between the stress waves, propagating cracks, interfaces, and bending deformations, in three-dimensions.


Author(s):  
Yan Xu ◽  
Zunce Wang ◽  
Fengxia Lv ◽  
Sen Li

The axial rotation of the hydrocyclone affects its internal flow characteristics and separating effect directly, as some local applications require the static hydrocyclone rotates about its own axis. Based on CFD, velocity distribution in the axial rotating hydrocyclone is studied. It is shown that as the rotation speed increasing, the tangential velocity improves and its gradient reduces in free vortex region observably, while the radial velocity has an incremental trend in the section of the small cone. The laboratory experiments are carried out for the static hydrocyclone of disposal capacity of 4 m3/h at 100r/min ∼ 300r/min. The relationships among rotation speed, flowrate, pressure drop and separated efficiency are achieved, which agree well with the numerical simulation results. The results indicate that the disposal capacity of hydrocyclone subjected to the rotation wall can be more flexible than that with no-rotating wall, the scope of best disposal capacity gradually enlarges with the increase of rotation speed of wall. Appropriate rise of the rotation speed is favor of the separation efficiency at the steady flowrate, however the increase of the flowrate and rotation speed induces the growth of the hydrocyclone’s pressure drop correspondingly to some extent.


Sign in / Sign up

Export Citation Format

Share Document