scholarly journals High resolution aerosol data from MODIS satellite for urban air quality studies

2014 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Chudnovsky ◽  
A. Lyapustin ◽  
Y. Wang ◽  
C. Tang ◽  
J. Schwartz ◽  
...  

AbstractThe Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM2.5 as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R2 =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM2.5 ground concentrations. Finally, we studied the relationship between PM2.5 and AOD at the intra-urban scale (≤10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM2.5 relationship does not depend on relative humidity and air temperatures below ~7 °C. The correlation improves for temperatures above 7–16 °C. We found no dependence on the boundary layer height except when the former was in the range 250–500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM2.5 concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM2.5 mass concentrations are highly correlated with the actual observations (out-of-sample R2 of 0.86). Therefore, adjustment for the daily variability in the AOD-PM2.5 relationship provides a means for obtaining spatially-resolved PM2.5 concentrations.

2016 ◽  
Vol 9 (11) ◽  
pp. 5575-5589 ◽  
Author(s):  
Yerong Wu ◽  
Martin de Graaf ◽  
Massimo Menenti

Abstract. Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the previous study and MODIS Collection 6 DT algorithm, with the increase of 2.0 and 4.5 % AOD retrievals falling within the expected accuracy envelope ±(0.05 + 15 %), respectively. This implies that the users can get more accurate data without angular bias, i.e., more meaningful AOD data.


2021 ◽  
Vol 21 (24) ◽  
pp. 18375-18391
Author(s):  
Qingqing He ◽  
Mengya Wang ◽  
Steve Hung Lam Yim

Abstract. Satellite aerosol retrievals have been a popular alternative to monitoring the surface-based PM2.5 concentration due to their extensive spatial and temporal coverage. Satellite-derived PM2.5 estimations strongly rely on an accurate representation of the relationship between ground-level PM2.5 and satellite aerosol optical depth (AOD). Due to the limitations of satellite AOD data, most studies have examined the relationship at a coarse resolution (i.e., ≥ 10 km); thus, more effort is still needed to better understand the relationship between “in situ” PM2.5 and AOD at finer spatial scales. While PM2.5 and AOD could have obvious temporal variations, few studies have examined the diurnal variation in their relationship. Therefore, considerable uncertainty still exists in satellite-derived PM2.5 estimations due to these research gaps. Taking advantage of the newly released fine-spatial-resolution satellite AOD data derived from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm and real-time ground aerosol and PM2.5 measurements, this study explicitly explored the relationship between PM2.5 and AOD as well as its plausible impact factors, including meteorological parameters and topography, in mainland China during 2019, at various spatial and temporal scales. The coefficient of variation, the Pearson correlation coefficient and the slope of the linear regression model were used. Spatially, stronger correlations mainly occurred in northern and eastern China, and the linear slope was larger on average in northern inland regions than in other areas. Temporally, the PM2.5–AOD correlation peaked at noon and in the afternoon, and reached a maximum in winter. Simultaneously, considering relative humidity (RH) and the planetary boundary layer height (PBLH) in the relationship can improve the correlation, but the effect of RH and the PBLH on the correlation varied spatially and temporally with respect to both strength and direction. In addition, the largest correlation occurred at 400–600 m primarily in basin terrain such as the Sichuan Basin, the Shanxi–Shaanxi basins and the Junggar Basin. MAIAC 1 km AOD can better represent the ground-level fine particulate matter in most domains with exceptions, such as in very high terrain (i.e., Tibetan Plateau) and northern central China (i.e., Qinghai and Gansu). The findings of this study have useful implications for satellite-based PM2.5 monitoring and will further inform the understanding of the aerosol variation and PM2.5 pollution status of mainland China.


2011 ◽  
Vol 11 (4) ◽  
pp. 12519-12560
Author(s):  
H. Zhang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
S. Kondragunta ◽  
I. Laszlo ◽  
...  

Abstract. Aerosol optical depth (AOD) retrieval from geostationary satellites has high temporal resolution compared to the polar orbiting satellites and thus enables us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosol and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) at channel 1 of GOES is proportional to seasonal average BRDF in the 2.1 μm channel from MODIS. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of the AOD and surface reflectance retrievals are evaluated through comparison against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US. They are comparable to the GASP retrievals in the eastern-central sites and are more accurate than GASP retrievals in the western sites. In the western US where surface reflectance is high, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.


2011 ◽  
Vol 11 (23) ◽  
pp. 11977-11991 ◽  
Author(s):  
H. Zhang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
S. Kondragunta ◽  
I. Laszlo ◽  
...  

Abstract. Aerosol optical depth (AOD) retrievals from geostationary satellites have high temporal resolution compared to the polar orbiting satellites and thus enable us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosols and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) in the channel 1 of GOES is proportional to seasonal average MODIS BRDF in the 2.1 μm channel. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of AOD and surface reflectance retrievals are evaluated through comparisons against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US with correlation coefficients ranges from 0.71 to 0.85 at five out of six sites. At the two western sites Railroad Valley and UCSB, the MAIAC AOD retrievals have correlations of 0.8 and 0.85 with AERONET AOD, and are more accurate than GASP retrievals, which have correlations of 0.7 and 0.74 with AERONET AOD. At the three eastern sites, the correlations with AERONET AOD are from 0.71 to 0.81, comparable to the GASP retrievals. In the western US where surface reflectance is higher than 0.15, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.


Author(s):  
Yan Li ◽  
Yuanliang Liu ◽  
Jianliang Wu

Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.


2013 ◽  
Vol 13 (21) ◽  
pp. 10907-10917 ◽  
Author(s):  
A. Chudnovsky ◽  
C. Tang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
J. Schwartz ◽  
...  

Abstract. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the MODerate Resolution Imaging Spectroradiometer (MODIS), which provides aerosol optical depth (AOD) at 1 km resolution. The relationship between MAIAC AOD and PM2.5 as measured by 84 EPA ground monitoring stations in the entire New England and the Harvard super site during 2002–2008 was investigated and also compared to the AOD–PM2.5 relationship using conventional MODIS 10 km AOD retrieval from Aqua platform (MYD04) for the same days and locations. The correlations for MYD04 and for MAIAC are r = 0.62 and 0.65, respectively, suggesting that AOD is a reasonable proxy for PM2.5 ground concentrations. The slightly higher correlation coefficient (r) for MAIAC can be related to its finer resolution resulting in better correspondence between AOD and EPA monitoring sites. Regardless of resolution, AOD–PM2.5 relationship varies daily, and under certain conditions it can be negative (due to several factors such as an EPA site location (proximity to road) and the lack of information about the aerosol vertical profile). By investigating MAIAC AOD data, we found a substantial increase, by 50–70% in the number of collocated AOD–PM2.5 pairs, as compared to MYD04, suggesting that MAIAC AOD data are more capable in capturing spatial patterns of PM2.5. Importantly, the performance of MAIAC AOD retrievals is slightly degraded but remains reliable under partly cloudy conditions when MYD04 data are not available, and it can be used to increase significantly the number of days for PM2.5 spatial pattern prediction based on satellite observations.


Author(s):  
Yan Li ◽  
Yuanliang Liu ◽  
Jianliang Wu

Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.


2016 ◽  
Vol 9 (7) ◽  
pp. 3293-3308 ◽  
Author(s):  
Pawan Gupta ◽  
Robert C. Levy ◽  
Shana Mattoo ◽  
Lorraine A. Remer ◽  
Leigh A. Munchak

Abstract. The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard the two Earth Observing System (EOS) satellites Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air-quality applications. However, the application of MODIS aerosol products for air-quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. This is largely because the urban surface reflectance behaves differently than that assumed for natural surfaces. In this study, we address the inaccuracies produced by the MODIS Dark Target (MDT) algorithm aerosol optical depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS Land Surface Reflectance and Land Cover Type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the continental United States (CONUS). The new surface scheme takes into account the change in underlying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20 %. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sun photometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1 due to the ultra-sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.


2013 ◽  
Vol 13 (6) ◽  
pp. 14581-14611 ◽  
Author(s):  
A. Chudnovsky ◽  
C. Tang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
J. Schwartz ◽  
...  

Abstract. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) which provides Aerosol Optical Depth (AOD) at 1 km resolution. The relationship between MAIAC AOD and PM2.5 as measured by 84 EPA ground monitoring stations in the entire New England and the Harvard supersite during 2002–2008 was investigated and also compared to the AOD/PM2.5 relationship using conventional MODIS 10 km AOD retrieval (MYD04) for the same days and locations. The correlations for MYD04 and for MAIAC are r = 0.62 and 0.65, respectively, suggesting that AOD is a reasonable proxy for PM2.5 ground concentrations. The slightly higher correlation coefficient (r) for MAIAC can be related to its finer resolution resulting in better correspondence between AOD and EPA monitoring sites. Regardless of resolution, AOD/PM2.5 relationship varies daily, and under certain conditions it can be negative (due to several factors such as an EPA site location (proximity to road) and the lack of information about the aerosol vertical profile). By investigating MAIAC AOD data we found a substantial increase, by 50–70% in the number of collocated AOD vs PM2.5 pairs, as compared to MYD04, suggesting that MAIAC AOD data is more capable in capturing spatial patterns of PM2.5. Importantly, the performance of MAIAC AOD retrievals remains reliable under partly cloudy conditions when MYD04 data are not available, and it can be used to significantly increase the number of days for PM2.5 spatial pattern prediction based on satellite observations.


Sign in / Sign up

Export Citation Format

Share Document