scholarly journals Plant Extracts Inducing Enzyme Activity in Grains Against Loose Smut Disease

2021 ◽  
Vol 52 (3) ◽  
pp. 49-59
Author(s):  
B. Karsou ◽  
R. Samara

Abstract This study investigated the role of endogenous Palestinian plant extracts in inducing wheat and barley resistance systems against loose smut disease with the aim to alternate the chemical pest control with natural fungicides. Twenty indigenous herbal plant extracts and essential oils were assessed for their biological and antifungal properties against Ustilago tritici and Ustilago nuda. Their potential role in inducing resistance pathways was studied on four different cultivars of wheat and barley. Two common enzyme indicators – guaiacol peroxidase (POX) and polyphenol oxidase (PPO) – are expressed in plants only after physical or chemical induction. The antifungal activity of the plant extracts was investigated in vitro. Totally 70 % of the plant extracts showed antifungal activity against Ustilago tritici and Ustilago nuda. Coridothyme extracts ranked first (61 %) in the fungal growth inhibition, followed by varthemia, salvia, ambrosia, artemisia, and lemon thyme. Some plant extracts significantly increased the POX and PPO effect compared to control for all the wheat and barley cultivars tested. The study revealed that oregano, clove or lavender and pomegranate, common yarrow or chamomile oil effectively induced the resistance indicator enzymes in wheat and barley.

2018 ◽  
Vol 10 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Bárbara Ponzilacqua ◽  
Carlos Humberto Corassin ◽  
Carlos Augusto Fernandes Oliveira

Aflatoxins are secondary metabolites produced by fungi of the genusAspergillus, which occur naturally in cereals like corn, beans and rice. Aflatoxin B1causes an extensive number of toxic effects in animals and humans. This mycotoxin is a stable term and can act in low concentrations due to their higher toxicity. Management to prevent commodities aflatoxin contamination is essential during the production, mainly in pre- and post-harvest steps. A number of essential oils and aqueous plant extracts have been reported to be fungal growth inhibitors and may provide an attractive alternative to prevent aflatoxin contamination in foods. Thus, the aim of this review is to highlight recent data on thein vitroantifungal activity of essential oils and aqueous extracts from plants and discuss the perspectives of their use in food products.


2006 ◽  
Vol 50 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Jingsong Zhu ◽  
Paul W. Luther ◽  
Qixin Leng ◽  
A. James Mixson

ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.


2001 ◽  
Vol 45 (5) ◽  
pp. 1450-1455 ◽  
Author(s):  
Donatella Taramelli ◽  
Clara Tognazioli ◽  
F. Ravagnani ◽  
O. Leopardi ◽  
G. Giannulis ◽  
...  

ABSTRACT The antimicrobial activities of chloroquine (CQ) and several 4-aminoquinoline drugs were tested against Penicillium marneffei, an opportunistic fungus that invades and grows inside macrophages and causes disseminated infection in AIDS patients. Human THP1 and mouse J774 macrophages were infected in vitro with P. marneffei conidia and treated with different doses of drugs for 24 to 48 h followed by cell lysis and the counting of P. marneffei CFU. CQ and amodiaquine exerted a dose-dependent inhibition of fungal growth, whereas quinine and artemisinin were fungistatic and not fungicidal. The antifungal activity of CQ was not due to an impairment of fungal iron acquisition in that it was not reversed by the addition of iron nitrilotriacetate, FeCl3, or iron ammonium citrate. Perl's staining indicated that CQ did not alter the ability of J774 cells to acquire iron from the medium. Most likely, CQ's antifungal activity is due to an increase in the intravacuolar pH and a disruption of pH-dependent metabolic processes. Indeed, we demonstrate that (i) bafilomycin A1 and ammonium chloride, two agents known to alkalinize intracellular vesicles by different mechanisms, were inhibitory as well and (ii) a newly synthesized 4-amino-7-chloroquinoline molecule (compound 9), lacking the terminal amino side chain of CQ that assists in drug accumulation, did not inhibit P. marneffei growth. These results suggest that CQ has a potential for use in prophylaxis of P. marneffeiinfections in human immunodeficiency virus-infected patients in countries where P. marneffei is endemic.


Author(s):  
Luana Pereira Borba-Santos ◽  
Thayná Lopes Barreto ◽  
Taissa Vila ◽  
Kung Darh Chi ◽  
Fabiana dos Santos Monti ◽  
...  

Sporotrichosis has become an important zoonosis in Brazil and Sporothrix brasiliensis is the primary species transmitted by cats. Improvement of animal treatment will help control and limit the spread and geographic expansion of sporotrichosis. Accordingly, buparvaquone, an antiprotozoal hydroxynaphthoquinone agent marketed as Butalex®, was evaluated in vitro and in vivo against feline-borne isolates of S. brasiliensis . Buparvaquone inhibited in vitro fungal growth at concentrations 4-fold lower than itraconazole (the first-choice antifungal used for sporotrichosis) and was 408 times more selective for S. brasiliensis than mammalian cells. Yeasts treated with a subinhibitory concentration of buparvaquone exhibited mitochondrial dysfunction, ROS and neutral lipid accumulation, and impaired plasma membranes. Also, scanning electron microscopy images revealed buparvaquone altered cell wall integrity and induced cell disruption. I n vivo experiments in a Galleria mellonella model revealed that buparvaquone (single dose of 5 mg/kg) is more effective than itraconazole against infections with S. brasiliensis yeasts. Combined, our results indicate that buparvaquone has a great in vitro and in vivo antifungal activity against S. brasiliensis , revealing the potential application of this drug as an alternative treatment for feline sporotrichosis.


2021 ◽  
Author(s):  
Pamela R. Avila ◽  
Graciela Juez Castillo ◽  
Carel E. Carvajal

Abstract Fungal diseases are a current problem in agriculture causing significant losses in several crops whereby its prevention and treatment is of utmost importance. The Chitosan nanoparticles (ChNPs) were evaluated for their antimicrobial activity against the phytopathogen Fusarium solani. The chitosan concentration in nanoparticles that showed antifungal activity was 2.0 µg/mL. ChNPs showed to be a potential antifungal candidate with applications in phytosanitary control. Transmission electron microscopy (TEM) results showed damage to the fungal cell wall and membrane caused by the nanoparticles interaction with these structures affecting fungal growth and development in in vitro as in in vivo assay where microscopy demonstrated the internalization of nanoparticles aggregates within plant root cells cytoplasm up to 45 days. Therefore ChNPs nanoparticles could be an alternative method for diseases caused by Fusarium solani instead of chemical fungicides commonly used for treating tomato root rot.


2020 ◽  
Vol 15 (6) ◽  
pp. 648-655
Author(s):  
Gabriel O. de Azambuja ◽  
Laura Svetaz ◽  
Itamar L. Gonçalves ◽  
Patricia F. Corbelini ◽  
Gilsane L. von Poser ◽  
...  

Background: Since the Monastrol discovery in 1999 as the first inhibitor of Eg5, functionalized dihydropyrimidinones/thiones (DHPMs) have emerged as prototypes for drug design in different targets. The present work aimed to evaluate the antifungal activity of a chemical library of DHPMs. Methods: The compounds were obtained employing Biginelli reaction. Their antifungal activities were assessed against C. neoformans and C. albicans. Results: The compounds 1-i and 1-k inhibited moderately the fungal growth of C. neoformans, with compound 2-k presenting MIC80 values of 62.5-125 µg·mL-1. Considering activity against C. albicans, the compounds 1-i and 1-n present an MIC50 value of 125-250 µg·mL-1. Conclusion: The changes performed in DHPM scaffold appear to be valuable for generating compounds with potential antifungal effect.


2015 ◽  
Vol 60 (2) ◽  
pp. 1035-1039 ◽  
Author(s):  
Yuji Tabata ◽  
Naomi Takei-Masuda ◽  
Natsuki Kubota ◽  
Sho Takahata ◽  
Makoto Ohyama ◽  
...  

ABSTRACTFungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate thein vitroantifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity againstTrichophyton rubrumandTrichophyton mentagrophytes(the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50and MIC90of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition ofTrichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document