scholarly journals Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

2015 ◽  
Vol 60 (2) ◽  
pp. 1035-1039 ◽  
Author(s):  
Yuji Tabata ◽  
Naomi Takei-Masuda ◽  
Natsuki Kubota ◽  
Sho Takahata ◽  
Makoto Ohyama ◽  
...  

ABSTRACTFungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate thein vitroantifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity againstTrichophyton rubrumandTrichophyton mentagrophytes(the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50and MIC90of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition ofTrichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation.

Biomedicine ◽  
2021 ◽  
Vol 41 (3) ◽  
pp. 616-622
Author(s):  
N Eramma ◽  
Devaraja Gayathri

Introduction and Aim: Flacourtia indica (Burm.f.) Merr. is a member of the family Flacourtiaceae. This herb was used to treat a range of ailments and served as the foundation for ethnomedicine. Despite its enormous medical importance, the plant has received very little research with only a few antibacterial and pharmacological studies. The plant's roots, in particular, are understudied.  In this study, the antioxidant and antifungal activities of methanol (MeOH) root extract of F. indica was tested in vitro.   Materials and Methods: Antifungal activity was assessed against human fungal pathogens, Aspergillus niger (MTCC 404) and Trichophyton mentagrophytes (MTCC 7687). The natural antioxidants in roots were studied using five different antioxidant methods, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide scavenging (NOS), reducing power assay (RPA), measuring total phenolic content (TPC) by Folin-Ciocalteu Reagent (FCR).   Results: When compared to Aspergillus niger, the root extract has strong antifungal activity against Trichophyton mentagrophytes (MTCC 7687), generating a broader zone of inhibition (MTCC 404). Clotrimazole is a common antifungal medicine that can be used as a positive control in this investigation. The antioxidant activity of MeOH root extract increased in a dose-dependent manner, and it had outstanding NOS and antioxidant properties.   Conclusion: The results conclude that, F. indica appears to be a promising herbal option for the treatment of a variety of fungal and bacterial infections, with high antioxidant capacity.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Adepemi O. Ogundeji ◽  
Boitumelo F. Porotloane ◽  
Carolina H. Pohl ◽  
Pravin S. Kendrekar ◽  
Olihile M. Sebolai

ABSTRACTThein vitroantifungal activity of aspirin against cryptococcal cells has been reported. However, the unwanted effects of aspirin may limit its clinical application. Conceivably, a derivative of aspirin could overcome this challenge. Toward this end, this study considered the usage of an aspirinate-metal complex, namely, copper acyl salicylate (CAS), as an anti-Cryptococcusantifungal agent. Additionally, the study examined the effects of this compound on macrophage function. Thein vitrosusceptibility results revealed that cryptococcal cells were vulnerable (in a dose-dependent manner) to CAS, which might have effected growth inhibition by damaging cryptococcal cell membranes. Interestingly, when CAS was used in combination with fluconazole or amphotericin B, synergism was observed. Furthermore, CAS did not negatively affect the growth or metabolic activity of macrophages; rather, it sensitized those immune cells to produce interferon gamma and interleukin 6, which, in turn, might have aided in the phagocytosis of cryptococcal cells. Compared to our aspirin data, CAS was noted to be more effective in killing cryptococcal cells (based on susceptibility results) and less toxic toward macrophages (based on growth inhibition results). Taking these findings together, it is reasonable to conclude that CAS may be a better anti-Cryptococcusdrug that could deliver better therapeutic outcomes, compared to aspirin.


2019 ◽  
Vol 7 (1) ◽  
pp. 44-54
Author(s):  
Muhaimin Muhaimin ◽  
Syamsurizal Syamsurizal ◽  
Madyawati Latief ◽  
Rahmi Iskandar ◽  
Anis Yohana Chaerunisaa ◽  
...  

Background: Eusiderin A is a neolignan derivate, which makes up the majority of the secondary metabolite of Eusideroxylon zwageri. It has been reported as a potent biopesticide and antifungal agent. Previous studies on the oxidation of terminal methylene of the allylic chain in Eusiderin A have been able to produce primary alcohol, pinacol, and an aldehyde which demonstrated strong activity against plant pathogenic fungi, therefore activity against dermal fungi needs to be studied. Objective: The current study aims to improve the hydrophilicity of Eusiderin A via oxidation of the allylic chain in order to derive a potent antifungal property. Methods: Transformation of Eusiderin A has been achieved by using the Wacker Oxidation Method in combination with the α-Hydroxylation-Ketone Method to produce 7,3’-epoxy-8,4’-oxyneolignane-1’- carboxylic acid. The structure of the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid was identified from spectroscopy data. The in vitro antifungal activity study was performed using the paper disc diffusion method against Trichophyton mentagrophytes. Results: New molecule of natural Eusiderin A through the oxidation of the allylic chain to increase the hydrophilicity of Eusiderin A has been designed. Based on the observed UV, IR, 1H and 13C-NMR, and MS spectra, it can be stated that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid has been formed. At a concentration of 50 ppm, this compound showed antifungal activity against Trichophyton mentagrophytes. Conclusion: It can be concluded that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid is a potent antifungal agent as it is able to inhibit the Trichophyton mentagrophytes colonies growth.


2004 ◽  
Vol 94 (6) ◽  
pp. 565-572 ◽  
Author(s):  
Douglas P. Kalinowski ◽  
Laura E. Edsberg ◽  
Robert A. Hewson ◽  
Robert H. Johnson ◽  
Michael S. Brogan

Onychomycosis, most commonly caused by two species of dermatophyte fungi—Trichophyton rubrum and Trichophyton mentagrophytes—is primarily treated with regimens of topical and systemic antifungal medications. This study was undertaken to evaluate in vitro the efficacy of low-voltage direct current as an antifungal agent for treating onychomycosis. Agar plate cultures of T rubrum and T mentagrophytes were subjected to low-voltage direct current electrostimulation, and antifungal effects were observed as zones in the agar around the electrodes lacking fungal growth. Zones devoid of fungal growth were observed for T rubrum and T mentagrophytes around anodes and cathodes in a dose-dependent manner in the current range of 500 μA to 3 mA. Low-voltage direct current electrostimulation has great clinical potential for the treatment of onychomycosis and perhaps other superficial maladies of fungal etiology. (J Am Podiatr Med Assoc 94(6): 565–572, 2004)


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin N. Nelson ◽  
Savannah G. Beakley ◽  
Sierra Posey ◽  
Brittney Conn ◽  
Emma Maritz ◽  
...  

AbstractCryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 737
Author(s):  
Marina Pekmezovic ◽  
Melina Kalagasidis Krusic ◽  
Ivana Malagurski ◽  
Jelena Milovanovic ◽  
Karolina Stępień ◽  
...  

Novel biodegradable and biocompatible formulations of “old” but “gold” drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.


2006 ◽  
Vol 50 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Jingsong Zhu ◽  
Paul W. Luther ◽  
Qixin Leng ◽  
A. James Mixson

ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.


2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


2015 ◽  
Vol 81 (18) ◽  
pp. 6129-6144 ◽  
Author(s):  
Abdulsamie Hanano ◽  
Ibrahem Almousally ◽  
Mouhnad Shaban ◽  
Elizabeth Blee

ABSTRACTCaleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein inAspergillus flavusthat is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway,aflRandaflD, were downregulated in the strains in whichA. flavusPXG(AfPXG) was silenced, leading to reduced aflatoxin B1 productionin vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in whichAfPXGwas silenced.PXG-deficientA. flavusstrains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.


Sign in / Sign up

Export Citation Format

Share Document