scholarly journals Genetic evaluation of Cryptomeria japonica breeding materials for male-sterile trees

2019 ◽  
Vol 68 (1) ◽  
pp. 67-72
Author(s):  
Takumi Tadama ◽  
Satoko Totsuka ◽  
Junji Iwai ◽  
Kentaro Uchiyama ◽  
Yoichi Hasegawa ◽  
...  

Abstract Pyramiding of male-sterile genes in Cryptomeria japonica is currently being carried out in Niigata prefecture, Japan. This is the first attempt to apply pyramid breeding to forest trees. As the breeding materials for male sterility are limited, special attention must be given to increased genetic relatedness in the process of pyramid breeding to avoid the effects of inbreeding depression as much as possible. In this study, we estimated genetic relatedness based on 246 genome-wide SNP markers for male-sterile individuals in Niigata Prefecture (n = 6) and individuals doubly heterozygous for two male-sterile genes (hereafter referred to as “double-hetero”) produced by marker- assisted selection (n = 124). The pairwise relatedness estimates between male-sterile individuals selected from the same area in Niigata Prefecture were low (−0.01 ± 0.08, mean ± standard deviation), suggesting that there will be almost no negative effects even if the F1 of these male-sterile individuals is used for artificial crossing. On the other hand, the pairwise relatedness between double-hetero individuals in this study was higher than the theoretical relatedness values, as individuals with the slightly higher relatedness were used as parents in artificial crossings. However, there was a large variance in pairwise relatedness for double-hetero individuals. This result suggested that it may be possible to avoid the adverse effects of inbreeding depression by using a pair of double-heteros with lower relatedness for artificial crossing, when we produce a double-homo using the limited breeding materials of male- sterile individuals. It will also be important to continue additional selection of new breeding material for male sterility.

2021 ◽  
Vol 103 (2) ◽  
pp. 161-167
Author(s):  
Satoko Hirayama ◽  
Junji Iwai ◽  
Yumi Higuchi ◽  
Takeo Kaneko ◽  
Yoshinari Moriguchi

2020 ◽  
Vol 10 (4) ◽  
pp. 1309-1318
Author(s):  
Tzu-Kai Lin ◽  
Ya-Ping Lin ◽  
Shun-Fu Lin

Male sterility has been widely used in hybrid seed production in Brassica, but not in B. rapa ssp. chinensis, and genetic models of male sterility for this subspecies are unclear. We discovered a spontaneous mutant in B. rapa ssp. chinensis. A series of progeny tests indicated that male sterility in B. rapa ssp. chinensis follows a three-allele model with BrMsa, BrMsb, and BrMsc. The male sterility locus has been mapped to chromosome A07 in BC1 and F2 populations through genotyping by sequencing. Fine mapping in a total of 1,590 F2 plants narrowed the male sterility gene BrMs to a 400 kb region, with two SNP markers only 0.3 cM from the gene. Comparative gene mapping shows that the Ms gene in B. rapa ssp. pekinensis is different from the BrMs gene of B. rapa ssp. chinensis, despite that both genes are located on chromosome A07. Interestingly, the DNA sequence orthologous to a male sterile gene in Brassica napus, BnRf, is within 400 kb of the BrMs locus. The BnRf orthologs of B. rapa ssp. chinensis were sequenced, and one KASP marker (BrMs_indel) was developed for genotyping based on a 14 bp indel at intron 4. Cosegregation of male sterility and BrMs_indel genotypes in the F2 population indicated that BnRf from B. napus and BrMs from B. rapa are likely to be orthologs. The BrMs_indel marker developed in this study will be useful in marker-assisted selection for the male sterility trait.


2020 ◽  
Author(s):  
Yanqin Fan ◽  
Yaning Meng ◽  
Libin Yan ◽  
Hongxiao Zhang

Abstract Breeding hybrids with nuclear male sterile lines is an important method for the cross breeding of sweet peppers. To date, few reports have been published on the nuclear male sterility gene of sweet pepper. Yet, there are approximately 20 pepper nuclear male sterility lines in the world. Using the self-developed testing material, sweet pepper nuclear male sterile dual-purpose line AB91, the genome-wide resequencing technique was applied to firstly find that the mutation site causing the abortion of sweet pepper nuclear male sterility AB91 is on chromosome #5. The mutation gene Capana05g000747 was filtered out and validated by the flight mass spectrometry genotyping method and determined to be the gene causing the abortion of sweet pepper nuclear male sterility AB91. The gene Capana05g000747 contains eight exons and seven introns, and its mutation site is a non-synonymous mutation site located at the 6th exon; the base C mutated into A, and the amino acid changed from alanine to serine. Sequence alignment analysis showed that the gene Capana05g000747 has a similar function to gene At2g02148. The gene At2g02148 contains a pentatricopeptide repeat protein which has important physiological functions in the gene expression process of organelles and is closely related to the performance of male sterility genes. Therefore, Capana05g000747 was selected as an important candidate gene for sweet pepper nuclear male sterile testing material AB91.


2019 ◽  
Vol 69 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Saneyoshi Ueno ◽  
Kentaro Uchiyama ◽  
Yoshinari Moriguchi ◽  
Tokuko Ujino-Ihara ◽  
Asako Matsumoto ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2689 ◽  
Author(s):  
Zhixin Wang ◽  
Xiangping Wu ◽  
Zengxiang Wu ◽  
Hong An ◽  
Bin Yi ◽  
...  

DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during plant development. However, few studies have determined the DNA methylation profiles of male-sterile rapeseed. Here, we conducted a global comparison of DNA methylation patterns between the rapeseed genic male sterile line 7365A and its near-isogenic fertile line 7365B by whole-genome bisulfite sequencing (WGBS). Profiling of the genome-wide DNA methylation showed that the methylation level in floral buds was lower than that in leaves and roots. Besides, a total of 410 differentially methylated region-associated genes (DMGs) were identified in 7365A relative to 7365B. Traditional bisulfite sequencing polymerase chain reaction (PCR) was performed to validate the WGBS data. Eleven DMGs were found to be involved in anther and pollen development, which were analyzed by quantitative PCR. In particular, Bnams4 was hypo-methylated in 7365A, and its expression was up-regulated, which might affect other DMGs and thus control the male sterility. This study provided genome-wide DNA methylation profiles of floral buds and important clues for revealing the molecular mechanism of genic male sterility in rapeseed.


Genetics ◽  
1982 ◽  
Vol 102 (2) ◽  
pp. 285-295
Author(s):  
H Ahokas

ABSTRACT A new cytoplasmic male sterility in barley (Hordeum vulgare s.l.) is described and designated as msm2. The cytoplasm was derived from a selection of the wild progenitor of barley (H. vulgare ssp. spontaneum). This selection, 79BS14-3, originates from the Southern Coastal Plain of Israel. The selection 79BS14-3 has a normal spike fertility in Finland. When 79BS14-3 was crossed by cv. Adorra, the F1 displayed partial male fertility and progeny of recurrent backcrosses with cv. Adorra were completely male sterile. Evidently 79BS14-3 is a carrier of a recessive or semidominant restorer gene of fertility. The dominant restorer gene Rfm1a for another cytoplasmic male sterility, msm1, is also effective in msm2 cytoplasm. The different partial fertility restoration properties of msm2 and msm1 cause these cytoplasms to be regarded as being distinct. Seventy spontaneum accessions from Israel have been studied for their capacity to produce F1 restoration of male fertility both in msm1 and in msm2 cytoplasms with a cv. Adorra-like seed parent (nuclear gene) background. The msm2 cytoplasm shows partial restoration more commonly than msm1 in these F1 combinations. The mean restoration percentage per accession for msm2 is 28, and for msm1 4. Most of the F1 seed set differences of the two cytoplasms are statistically significant. When estimated with partially restored F1 combinations, msm2 cytoplasm appeared to be about 50 times more sensitive to the male fertility-promoting genes present in the spontaneum accessions. The spontaneum sample from Central and Western Negev, which has been found to be devoid of restoration ability in msm1 cytoplasm, had only low partial restoration ability in msm2 (mean 0.3%). The female fertility of msm2 appears normal. The new msm2 cytoplasm could be useful in producing hybrid barley.


1994 ◽  
Vol 74 (4) ◽  
pp. 729-731 ◽  
Author(s):  
P. B. E. McVetty ◽  
R. Pinnisch

The pol cytoplasm is a male sterile cytoplasm with potential for use in hybrid summer rape (Brassica napus L.) seed production while the nap cytoplasm is the one most commonly encountered in summer rape cultivars. The objective of this study was to compare the performance of three cultivar-derived summer rape isoline pairs in the nap and pol cytoplasms to determine the relative effect on performance of these two cytoplasms. One nap line yielded significantly more than its corresponding pol line, three nap lines had significantly higher oil content than their corresponding pol lines, two nap lines had significantly higher protein content than their corresponding pol lines, and two nap lines produced significantly more seed energy than their corresponding pol lines. There are pleiotropic negative effects (biological costs) associated with the pol cytoplasm. These negative effects are affected by nuclear genotype and appear to be related to the depth of male sterility expressed in the derived pol A-line. Key words: Cytoplasm cost, Brassica napus L., cytoplasmic male sterility


1996 ◽  
Vol 127 (2) ◽  
pp. 161-167 ◽  
Author(s):  
S. H. Cheng ◽  
H. M. Si ◽  
L. S. Zhuo ◽  
Z. X. Sun

SUMMARYThe use of environmentally induced genetic male sterile (EGMS) rice could alter the development of hybrid rice from a three-line system to a two-line system. It is critical for the utilization of EGMS rice to determine which are the main environmental factors influencing fertility changes. Fertility responses to photoperiod (P) and temperature (T) were studied in 101 EGMS rice lines under nine controlled regimes combining three photoperiods (15·0, 14·0 and 12·5 h)x three temperatures (30·1, 24·1 and 23·1 °C). According to the variance analysis of seed-setting data, 96% of the total EGMS lines studied could be divided into three types as follows: (1) photoperiod-sensitive genetic male sterility (PGMS) characterized statistically by significant (P < 0·05) P and P × T interaction effects but by a non-significant T effect on fertility, (2) thermosensitive genetic male sterility (TGMS) by a significant T effect, a non-significant P effect and by either a significant or a non-significant P × T interaction effect on fertility, and (3) photo-thermosensitive genetic male sterility (P-TGMS) by only a significant P × T interaction effect on fertility. Among the japonica EGMS lines studied, PGMS, TGMS and P-TGMS accounted for 32·3, 9·7 and 51·6%, respectively. However, among the indica EGMS lines, no PGMS lines were detected and most of them were TGMS or P-TGMS (61·4 and 35·7%, respectively). The results indicate that the selection of indica PGMS lines of rice might be very difficult. The availability of different types of EGMS rice in two-line system hybrid rice is evaluated and the selection of an ideal model of response to photoperiod and temperature for indica EGMS is discussed.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1029 ◽  
Author(s):  
Tsuyoshi E. Maruyama ◽  
Saneyoshi Ueno ◽  
Satoko Hirayama ◽  
Takumi Kaneeda ◽  
Yoshinari Moriguchi

One of the possible countermeasures for pollinosis caused by sugi (Cryptomeria japonica), a serious public health problem in Japan, is the use of male sterile plants (MSPs; pollen-free plants). However, the production efficiencies of MSPs raised by conventional methods are extremely poor, time consuming, and resulting in a high seedling cost. Here, we report the development of a novel technique for efficient production of MSPs, which combines marker-assisted selection (MAS) and somatic embryogenesis (SE). SE from four full sib seed families of sugi, carrying the male sterility gene MS1, was initiated using megagametophyte explants that originated from four seed collections taken at one-week intervals during the month of July 2017. Embryogenic cell lines (ECLs) were achieved in all families, with initiation rates varying from 0.6% to 59%. Somatic embryos were produced from genetic marker-selected male sterile ECLs on medium containing maltose, abscisic acid (ABA), polyethylene glycol (PEG), and activated charcoal (AC). Subsequently, high frequencies of germination and plant conversion (≥76%) were obtained on plant growth regulator-free medium. Regenerated plantlets were acclimatized successfully, and the initial growth of male sterile somatic plants was monitored in the field.


Sign in / Sign up

Export Citation Format

Share Document