scholarly journals Environmental Assessment of Buildings – A Suggestion

2020 ◽  
Vol 28 (1) ◽  
pp. 20-24
Author(s):  
Martin Jamnický ◽  
Roman Rabenseifer

AbstractThis article proposes to contribute to the discussion on environmental product declarations for buildings. Using a simple life-cycle analysis of a low-energy detached house and CO2-equivalent emissions as a comparative unit, the case study presented illustrates the problems with the initial input data related to embodied energy and a definition of the criteria for an assessment of the environmental quality of buildings. The actual case study compares the expected energy demand of a detached house in the course of its service life and the energy input (embodied energy) necessary for its assembly and for the manufacture of the individual building products. The operation of the building during its service life is described using a computer-aided building performance simulation. The input data related to the embodied energy are based on information from classical works on life cycle analyses. In addition, the article discusses the limits of building envelope improvements in terms of the thickness of thermal insulation and also stresses the increasing significance of embodied energy in the environmental assessment of buildings.

2019 ◽  
Vol 887 ◽  
pp. 335-343
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karaguler ◽  
Touraj Ashrafian

Energy efficiency has become a crucial part of human life, which has an adverse impact on the social and economic development of any country. In Turkey, it is a critical issue especially in the construction sector due to increase in the dependency on the fuel demands. The energy consumption, which is used during the life cycle of a building, is a huge amount affected by the energy demand for material and building construction, HVAC and lighting systems, maintenance, equipment, and demolition. In general, the Life Cycle Energy (LCE) needs of the building can be summarised as the operational and embodied energy together with the energy use for demolition and recycling processes.Besides, schools alone are responsible for about 15% of the total energy consumption of the commercial building sector. To reduce the energy use and CO2 emission, the operational and embodied energy of the buildings must be minimised. Overall, it seems that choosing proper architectural measures for the envelope and using low emitting material can be a logical step for reducing operational and embodied energy consumptions.This paper is concentrated on the operating and embodied energy consumptions resulting from the application of different architectural measures through the building envelope. It proposes an educational building with low CO2 emission and proper energy performance in Turkey. To illustrate the method of the approach, this contribution illustrates a case study, which was performed on a representative schoold building in Istanbul, Turkey. Energy used for HVAC and lighting in the operating phase and the energy used for the manufacture of the materials are the most significant parts of embodied energy in the LCE analyses. This case study building’s primary energy consumption was calculated with the help of dynamic simulation tools, EnergyPlus and DesignBuilder. Then, different architectural energy efficiency measures were applied to the envelope of the case study building. Then, the influence of proposed actions on LCE consumption and Life Cycle CO2 (LCCO2) emissions were assessed according to the Life Cycle Assessment (LCA) method.


2016 ◽  
Vol 861 ◽  
pp. 601-608 ◽  
Author(s):  
Daniela Mackova ◽  
Marcela Spisakova ◽  
Mária Kozlovská ◽  
Jozef Svajlenka

Currently, we are witnessing the significant impact of industrial activity on the environment. A recent study shows that construction is the third largest industry sector in terms of environmental pollution. One option to reduce these negative effects is environmental assessment of buildings, as well as the used building materials. One of the most comprehensive environmental assessment methods is LCA (Life Cycle Assessment), which includes the assessment of impacts within mode ”Cradle-to-gate” which is focused on assessment of a partial product life cycle from resource extraction (cradle) to the factory gate (i.e., before it is transported to the consumer). The aim of this paper is a comparison of the environmental impact of selected material variants applied within modern methods of construction. The comparison will be processed through the results of the case study containing three material variants of family houses construction in term of three selected parameters - embodied energy, global warming potential and acidification potential.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Author(s):  
Matti Kuittinen ◽  
Atsushi Takano

Purpose The purpose of this study is to investigate the energy efficiency and life cycle carbon footprint of temporary homes in Japan after the Great Eastern Tohoku Earthquake in 2011. Design/methodology/approach An energy simulation and life cycle assessment have been done for three alternative shelter models: prefabricated shelters, wooden log shelters and sea container shelters. Findings Shelter materials have a very high share of life cycle emissions because the use period of temporary homes is short. Wooden shelters perform best in the comparison. The clustering of shelters into longer buildings or on top of each other increases their energy efficiency considerably. Sea containers piled on top of each other have superb energy performance compared to other models, and they consume even less energy per household than the national average. However, there are several gaps of knowledge in the environmental assessment of temporary homes and field data from refugee camps should be collected as part of camp management. Originality/value The findings exemplify the impacts of the proper design of temporary homes for mitigating their energy demand and greenhouse gas emissions.


Facilities ◽  
2014 ◽  
Vol 32 (3/4) ◽  
pp. 160-181 ◽  
Author(s):  
Manish K. Dixit ◽  
Charles H. Culp ◽  
Sarel Lavy ◽  
Jose Fernandez-Solis

Purpose – The recurrent embodied energy (REE) is the energy consumed in the maintenance, replacement and retrofit processes of a facility. The purpose of this paper was to analyze the relationship of REE with the service life and life cycle embodied energy. The amount of variation in the reported REE values is also determined and discussed. Design/methodology/approach – A qualitative approach that is known as the literature based discovery (LBD) was adopted. Existing literature was surveyed to gather case studies and to analyze the reported values of REE. Findings – The reported values of REE showed considerable variation across referred studies. It was also found that the reported REE values demonstrated a moderate positive correlation with the service life but a very strong positive correlation with the life cycle embodied energy of both the residential and commercial facilities. Research limitations/implications – This review paper pointed out the importance of the maintenance and replacement processes in reducing the life cycle energy use in a facility. Future research could focus on performing case studies to evaluate this relationship. Practical implications – The findings highlight the significance of REE in reducing the life cycle energy impacts of a facility. As facility managers routinely deal with maintenance and replacement processes, they hold an important responsibility of reducing the life cycle energy. Originality/value – The findings of the paper would motivate the facilities management professionals to prefer long service life materials and components during the postconstruction phases of a built facility.


2019 ◽  
Vol 6 (4) ◽  
pp. 443-456
Author(s):  
Kourosh Rahmani ◽  
Zeynab Dadashkhah ◽  
Morteza Alighadri ◽  
Ahmad Mokhtari ◽  
Hadi Nazari ◽  
...  

2014 ◽  
Vol 32 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Zaid Alwan ◽  
Paul Jones

Purpose – The construction industry has focused on operational and embodied energy of buildings as a way of becoming more sustainable, however, with more emphasis on the former. The purpose of this paper is to highlight the impact that embodied energy of construction materials can have on the decision making when designing buildings, and ultimately on the environment. This is an important aspect that has often been overlooked when calculating a building's carbon footprint; and its inclusion this approach presents a more holistic life cycle assessment. Design/methodology/approach – A building project was chosen that is currently being designed; the design team for the project have been tasked by the client to make the facility exemplary in terms of its sustainability. This building has a limited construction palette; therefore the embodied energy component can be accurately calculated. The authors of this paper are also part of the design team for the building so they have full access to Building Information Modelling (BIM) models and production information. An inventory of materials was obtained for the building and embodied energy coefficients applied to assess the key building components. The total operational energy was identified using benchmarking to produce a carbon footprint for the facility. Findings – The results indicate that while operational energy is more significant over the long term, the embodied energy of key materials should not be ignored, and is likely to be a bigger proportion of the total carbon in a low carbon building. The components with high embodied energy have also been identified. The design team have responded to this by altering the design to significantly reduce the embodied energy within these key components – and thus make the building far more sustainable in this regard. Research limitations/implications – It may be is a challenge to create components inventories for whole buildings or for refurbishments. However, a potential future approach for is application may be to use a BIM model to simplify this process by imbedding embodied energy inventories within the software, as part of the BIM menus. Originality/value – This case study identifies the importance of considering carbon use during the whole-life cycle of buildings, as well as highlighting the use of carbon offsetting. The paper presents an original approach to the research by using a “live” building as a case study with a focus on the embodied energy of each component of the scheme. The operational energy is also being calculated, the combined data are currently informing the design approach for the building. As part of the analysis, the building was modelled in BIM software.


Energies ◽  
2012 ◽  
Vol 5 (10) ◽  
pp. 3972-3985 ◽  
Author(s):  
Alexandre Hugo ◽  
Radu Zmeureanu

The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document