scholarly journals Effect of various surfactants and their concentration on controlled release of captopril from polymeric matrices

2008 ◽  
Vol 58 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Ali Nokhodchi ◽  
Davoud Hassan-Zadeh ◽  
Farnaz Monajjem-Zadeh ◽  
Nita Taghi-Zadeh

Effect of various surfactants and their concentration on controlled release of captopril from polymeric matricesVarious methods are available to formulate water soluble drugs into sustained release dosage forms by retarding the dissolution rate. One of the methods used to control drug release and thereby prolong therapeutic activity is to use hydrophilic and lipophilic polymers. In this study, the effects of various polymers such as hydroxypropyl methylcellulose (HPMC), ethylcellulose (EC) and sodium carboxymethylcellulose (CMC) and surfactants (sodium lauryl sulphate, cetyltrimethylammonium bromide and Arlacel 60) on the release rate of captopril were investigated. The results showed that an increase in the amount of HPMC K15M resulted in reduction of the release rate of captopril from these matrices. When HPMC was partly replaced by NaCMC (the ratio of HPMC/NaCMC was 5:1), the release rate of the drug significantly decreased. However, there was no significant difference in release rate of captopril from matrices produced with ratios of 5:1 and 2:1 of HPMC/NaCMC. The presence of lactose in matrices containing HPMC and NaCMC increased the release rate of captopril. It was interesting to note that although partial replacement of HPMC by EC reduced the release rate of the drug (ratio of HPMC/EC 2:1), the release rate was increased when the ratio of HPMC/EC was reduced to 1:1. The effects of various surfactants on the release rate of captopril from HPMC/EC (1:1) matrices were also investigated. The results showed that the surfactants did not significantly change the release rate of the drug. Release data were examined kinetically and the ideal kinetic models were estimated for the drug release. The kinetic analysis of drug release data from various formulations showed that incorporation of surfactants in HPMC/EC matrices did not produce a zero-order release pattern.

2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 80 ◽  
Author(s):  
Lu Chen ◽  
Guobao Yang ◽  
Xiaoyang Chu ◽  
Chunhong Gao ◽  
Yuli Wang ◽  
...  

Phase-separated films of water-insoluble ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be utilized to tailor drug release from coated pellets. In the present study, the effects of HPC levels and the pH, type, ionic strength and osmolarity of the media on the release profiles of soluble metoprolol succinates from the EC/HPC-coated pellets were investigated, and the differences in drug-release kinetics in multiple media were further elucidated through the HPC leaching and swelling kinetics of the pellets, morphology (SEM) and water uptake of the free films and the interaction between the coating polymers and the media compositions. Interestingly, the drug release rate from the pellets in different media was not in agreement with the drug solubility which have a positive correlation with the drug dissolution rate based on Noyes–Whitney equation law. In particular, the drug release rate in acetate buffer at pH 4.5 was faster than that in other media despite the solubility of drug was relatively lower, regardless of the HPC levels. It may be attributed to the mutual effect between the EC and acetate buffer, which improved the permeability of the film. In contrast, the release of drug in HCl solution was dependent on the HPC levels. Increasing the levels of HPC increased the effects of hydrogen ions on the polymer of HPC, which resulted in a lower viscosity and strength of the gel, forming the larger size of pores in polymer films, thus increasing the drug diffused from the coating film. Further findings in phosphate buffer showed a reduction in the drug release compared to that in other media, which was only sensitive to the osmolarity rather than the HPC level and pH of the buffer. Additionally, a mathematical theory was used to better explain and understand the experimentally measured different drug release patterns. In summary, the study revealed that the effects of the media overcompensated that of the drug solubility to some extent for controlled-release of the coating polymers, and the drug release mechanism in multiple media depend on EC and HPC rather than on HPC alone, which may have a potential to facilitate the optimization of ideally film-coated formulations.


Author(s):  
Nilam Patel ◽  
Rupal Jani

Conventional coating processes are based on aqueous or organic solvent system, resulting in the lengthy and tedious processes where use and removal of solvents consumes lots of energy and resources. Also, solvent disposal is a critical issue considering environmental hazard.Hot melt coating process avoids use of solvent and is short and energy-efficient process. Here, Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system to deliver highly water soluble Biopharmaceutical Classification System (BCS) class-I drug Levetiracetam. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of lipid and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus onHMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment Failure Mode and Effect analysis (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization by Central Composite Design (CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


2012 ◽  
Vol 48 (4) ◽  
pp. 609-619
Author(s):  
Songa Ambedkar Sunil ◽  
Meka Venkata Srikanth ◽  
Nali Sreenivasa Rao ◽  
Sakamuri Balaji ◽  
Kolapalli Venkata Ramana Murthy

The objective of the present investigation was to develop bilayered tablets of lornoxicam to achieve biphasic release pattern. A bilayered tablet, consisting of an immediate and controlled release layer, was prepared by direct compression technique. The controlled release effect was achieved by using various hydrophilic natural, semi synthetic and synthetic controlled release polymers such as xanthan gum, hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) to modulate the release of the drug. The in vitro drug release profiles showed the biphasic release behavior in which the immediate release (IR) layer containing the lornoxicam was released within 15 minutes, whereas the controlled release (CR) layer controlled the drug release for up to 24 h. All the bilayered tablets formulated have followed the zero order release with non-Fickian diffusion controlled release mechanism after the initial burst release. FTIR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA) showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05) in the amount of drug released after 24 h from optimized formulations was observed. Based on the release kinetic parameters obtained, it can be concluded that xanthan gum polymer was suitable for providing a biphasic release of lornoxicam.


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


2017 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Manjunath P. N. ◽  
Satish C. S. ◽  
Vasanti S. ◽  
Preetham A. C. ◽  
Naidu Ras

Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n’ value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets.


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document