scholarly journals Efficacy of Some Plant Extracts Against Rhizoctonia Solani on Pea

2010 ◽  
Vol 50 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Abdulaziz Al-Askar ◽  
Younes Rashad

Efficacy of Some Plant Extracts AgainstRhizoctonia Solanion PeaAntifungal activity of ethanol-water extracts of four medicinal plants, cinnamon (Cinnamomum verumPresl.), anise (Pimpinella anisumL.), black seed (Nigella sativaL.) and clove (Syzygium aromaticumL. Merr. & Perry.) was investigated against pea (Pisum sativumL.) root-rot fungusRhizoctonia solani. In vitroantifungal activity test shown a high growth inhibition at concentration (4%) of each plant extract. The highest antifungal activity was recorded for clove extract which causes complete growth inhibition at concentration of 1%. Efficacy of clove extract on disease incidence ofRhizoctoniaroot-rot of pea was investigated in the greenhouse pot experiment. Clove extract at concentration 4% as well as the chemical fungicide recorded highly significant increase in the percentage of survived plants (40 and 48%, respectively) and highly significant decrease in disease incidence.

Author(s):  
Shankar Lal Yadav ◽  
R.P. Ghasolia

Background: Root rot of fenugreek (Trigonella foenum-graecum L.) caused by Rhizoctonia solani is an important constraint to the crop and causes significant economic losses in Rajasthan as well as India and fungicides are the major tool to overcome the disease incidence. As per environment and health issues and demand of organically produced fenugreek green leaves and seeds, it is a major concerned to control it by eco-friendly approaches. The current study aimed to find the most effective control measure of this dreaded disease through eco-friendly approaches.Methods: The present field-laboratory investigations were conducted during 2016-17 and 2017-18, to evaluate six plant extracts in vitro and in vivo, namely neem (Azadirachta indica), Alstonia (Alstonia scholaris), garlic (Allium sativum), datura (Datura stramonium), tulsi (Ocimum tenuiflorum), aak (Calotropis gigantea) and four bio-agents (Trichoderma harzianum, T. viride, Bacillus subtilis and Pseudomonas fluorescens) in vivo through seed treatment alone and/or in combination for two consecutive years. Result: Our investigations in vitro with botanicals cleared that garlic clove extract was highly antimycotic to the pathogen (79.52%) followed by aak (62.48%) and neem extract (53.37%). Under field conditions, seed soaking with garlic clove extract (@10%) for 30 minutes was observed the most effective in reducing disease incidence (62.02%) and in increasing seed yield (65.35%) followed by aak (56.56% and 59.82%, respectively). In bio-agents, Trichoderma harzianum + Pseudomonas fluorescens (@ 3+3 g/kg seeds) was found superior in reducing disease incidence (66.81%) and in increasing seed yield (73.06%) and the next best was T. viride + P. fluorescens. The findings of this study can be utilized to manage the disease effectively and eco-friendly and also to obtain organic produce of the fenugreek.


2018 ◽  
Vol 3 (02) ◽  
pp. 166-170
Author(s):  
Safdar Kaiser Hasmi ◽  
R. U. Khan

In-vitro effectiveness of various antagonistic fungi namely Aspergillus niger, A. flavus, Trichoderma koningii, T. atroviride, and T. harzianum were evaluated against Rhizoctonia solani by dual culture technique on potato dextrose agar. According to the observation recorded after 5 days, all the treatments were found to be superior over control (R. solani), but among all treatments A. niger was found to the most effective antagonist, with highest radial growth inhibition of the pathogen (77.01 percent), followed by A. flavus, T. harzianum and T. koningii i.e., 66.23, 64.42 and 62.20 percent. While as, T. atroviride was found to be the least effective one with minimum growth inhibition i.e., 42.21 percent. Whereas, at the same time control (R. solani) showed 100 percent radial growth and covered the whole Petri Plate within 5 days. All the bio-control agents were significantly effective to inhibit the sclerotia formation and development, except T. atroviride in which formation of sclerotia was recorded, while in all other treatments complete inhibition of sclerotia formation was recorded after 10 days of incubation.


Author(s):  
Shankar Lal Yadav ◽  
R. P. Ghasolia ◽  
Jitendra Sharma

Background: Root rot disease of fenugreek caused by Rhizoctonia solani has become a severe menace to the growers of Rajasthan as well as India. This pathogen survives in soil, causes damping off and root rot symptoms and responsible nearly for 50 per cent disease incidence and yield losses. Methods: During 2016-17 to 2017-18 cropping seasons, this study was carried out with the aim to manage the disease by means of using six fungicides including newer formulations (hexaconazole and tebuconazole + trifloxystrobin) under in vitro and field conditions. Result: The result of in vitro study with tebuconazole + trifloxystrobin was found to be most fungitoxic and inhibited mycelial growth cent per cent at 200 and 500 ppm concentrations. Seed treatment with tebuconazole + trifloxystrobin (@ 0.2%) was found highly effective in reducing disease incidence (83.12%) and in increasing seed yield (84.71%) under field conditions. Thus, it can be concluded that the use of newer combined formulation as seed treatment before sowing provide us alternative source to manage root rot disease of fenugreek.


2010 ◽  
Vol 32 (3) ◽  
pp. 324-328 ◽  
Author(s):  
Francisco Castillo ◽  
Daniel Hernández ◽  
Gabriel Gallegos ◽  
Martha Mendez ◽  
Raúl Rodríguez ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


Sign in / Sign up

Export Citation Format

Share Document