scholarly journals Estimation of wind erosion rates of Mongolian Plateau by using 137Cs tracing technique

Author(s):  
Yongqing Qi ◽  
Jiyuan Liu ◽  
Huading Shi ◽  
Dafang Zhuang ◽  
Yunfeng Hu

Estimation of wind erosion rates of Mongolian Plateau by using 137Cs tracing technique Wind erosion is one of the major environmental problems in semi-arid and arid regions. Here we established a transect from northwest (Tariat, Mongolia) to southeast (Xilingol, Inner Mongolia of China) across the Mongolian Plateau, and selected eight sampling sites along the transect. We then estimated the soil wind erosion rates by using the 137Cs tracing technique and examined their spatial dynamics. In the Mongolia section (from Tariat to Sainshand), the wind erosion rate increased gradually with vegetation type and climatic regimes; the wind erosion process was controlled by physical factors such as annual precipitation and vegetation coverage, etc. While in the China section (Inner Mongolia), the wind erosion rates of Xilinhot, Zhengxiangbai Banner and Taipusi Banner were thrice as much as those of Bayannur of Mongolia, although these four sites were all dominated by typical steppe. Besides the physical factors, higher population density and livestock carrying level should be responsible for the higher wind erosion rates in these regions of Inner Mongolia.

2014 ◽  
Vol 955-959 ◽  
pp. 3505-3508 ◽  
Author(s):  
Tian Ming Gao ◽  
Rui Qiang Zhang ◽  
Jian Ying Guo

In northern China, grassland has degraded severely and wind erosion occurs remarkably due to irrational land use in recent years. By employing sand sampler and mobile wind tunnel, an observation for 6 years was made to analyze the mechanisms of wind erosion in Xilamuren grassland, the central of Yinshan Mountains, Inner Mongolia. Results show that: (1) vegetation is the decisive factor for controlling wind erosion and the inhibiting effect of vegetation height on wind erosion is greater than that of vegetation coverage. (2) Wind erosion modulus in the initial period of enclosure reaches 1313.7 t km-2a-1 and with the improvement of the grassland vegetation, wind erosion decreases year by year. (3) For every 1000 kg soil eroded by wind, 15 kg organic matter, 227g available nitrogen, 262g available phosphorus and 120g available potassium lose in the region at the same time, being a tremendous fertility loss. Therefore, the protection of base grassland and restoration of degraded grassland are two fundamental approaches to control wind erosion on the grassland.


2012 ◽  
Vol 518-523 ◽  
pp. 4496-4503
Author(s):  
Jian Qiang Chen ◽  
Man Quan Zhao ◽  
Zhi Chen

The soil erosion test was carried out for the Zhao He grassland on the northern foothills of Yin Shan Mountain by the use of a portable wind erosion tunnel developed by Inner Mongolia Agricultural University, the variation low of soil wind erosion rate with the different wind speed and different arrangement in pairs of different soil moisture content and different vegetation coverage was obtained and the data analysis indicates that the anti-wind erosion characteristics of ground surface is most satisfactory when the vegetation coverage is 40%, soil moisture content 9.3% and the height of vegetation 50cm. The result of this study may provide a certain reference date for the application of prevention and control technology of soil wind erosion and be of vital significance to the implementation of sustainable development of livestock husbandry.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 732 ◽  
Author(s):  
Caihong Yang ◽  
Yanxiang Geng ◽  
Xing Zhou Fu ◽  
Jeffrey A. Coulter ◽  
Qiang Chai

Wind erosion is a major environmental problem in arid and semi-arid regions, where it has significant impacts on desertification and soil degradation. To understand the effects of cropping systems and tillage methods on the reduction of soil wind erosion, wind tunnel investigations were performed on soil samples from an irrigated field in an experiment conducted in semi-arid northwestern China in 2016–2018. Three cropping systems for annual spring wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping (W/M), a two-year wheat-winter rape-maize rotation (WRM), and a two-year wheat-maize rotation (WM)) were each evaluated with two tillage methods (conventional tillage without wheat straw retention (CT) and no-tillage with 25–30 cm tall wheat straw (NT)). The mean rate of soil erosion by wind with NT was 18.9% to 36.2% less than that with CT. With increasing wind velocity, the rate of soil erosion by wind increased for both CT and NT but was faster with CT than NT. Soil wind erosion occurred with a wind velocity ≥14 m s−1, and NT greatly decreased the rate of soil erosion when wind velocity exceeded 14 m s−1. W/M, WRM, and WM with NT increased non-erodible aggregates by 53.7%, 53.7%, and 54.9% in 2017, and 51.3%, 49.6% and 44.6% in 2018, respectively, than conventional tillage. At a height of 0–20 cm, the rate of soil transport with CT decreased with increasing height. The volume of soil transport at a height of 0–4 cm and soil transport percentage at a height of 0–4 and 0–20 cm (Q0–4/Q0–20) with NT were less than with CT. These findings show that NT with cropping system intensification can be an effective strategy for resisting wind erosion in irrigated semi-arid regions, thereby reducing the negative environmental impacts of crop production.


2008 ◽  
Vol 53 (9) ◽  
pp. 1423-1430 ◽  
Author(s):  
YongQing Qi ◽  
JiYuan Liu ◽  
HuaDing Shi ◽  
YunFeng Hu ◽  
DaFang Zhuang

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 583
Author(s):  
Wenfeng Chi ◽  
Yuanyuan Zhao ◽  
Wenhui Kuang ◽  
Tao Pan ◽  
Tu Ba ◽  
...  

Understanding soil erosion responses to cropland expansion/shrinking plays a crucial role in regional agriculture sustainability development in drylands. We selected Inner Mongolia, a typical water resource constraints region with acute cropland expansion, as the study area in China. Spatial cropland evolution and its impact on wind-driven soil erosion were investigated with the help of field sampling data, remotely sensed retrieved data, and the revised wind erosion model (RWEQ). Results showed that the cropland area of Inner Mongolia presented an increased growth trend, with a net increase area of 15,542.9 km2 from 1990 to 2018. Cropland characteristics in Inner Mongolia presented continuous growth in its eastern region, basically constant growth in its central region, and declined in its western region. Most cropland declines occurred after 2000 when the Grain for Green project began, which means that acute cropland expansion happened from 1990 to 2000. The soil wind erosion modulus showed a net increase with cropland expansion. The reclamation of forests and grasslands contributed to an increase of 5.0 million tons of the soil wind erosion modulus, 80% of which was produced in the eastern part of the region. The conversion from croplands to grasslands/forests caused a decrease of approximately 2.7 million tons, 62% of which was in the east and 25% in the west of the region. Considering the constraints of water shortage and over-exploitation of groundwater, we provide a path based on a balance between ”resource-production-ecosystem” to achieve ecologically sustainable agriculture development in the drylands of China.


Sign in / Sign up

Export Citation Format

Share Document