scholarly journals Assessment of permeability and pore water pressure in Warsaw clays based on in situ measurements

Author(s):  
Zdzisław Skutnik
2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2013 ◽  
Vol 368-370 ◽  
pp. 1674-1677
Author(s):  
Yong Hua Cao ◽  
Xiao Qiang Kou

In urban environment, the soil disturbance induced by shield tunneling can be sensitive because it can cause deformation of the ground and damage the near structure. To study this disturbance in the construction process of Tianjin metro line No.3, in-situ monitoring of pore water pressure, soil pressure and ground settlement were conducted. The pore water pressure was monitored for the soil around the tunnel. The soil pressure was monitored for the soil around the tunnel and on the tunnel face. It was revealed that the pore water pressure and soil pressure changed twice in the tunneling process and these changes were induced by cutting face and grouting at the shield tail. The soil pressure on the tunnel face reached its maximal value when the distance between the cutting face and the sensor elements was around the diameter of the tunnel. Ground settlement developed in the tunneling process. The shape of ultimate settlement trough is closed to the one obtained by Pecks method.


2006 ◽  
Vol 52 (177) ◽  
pp. 175-182 ◽  
Author(s):  
Martin Truffer ◽  
William D. Harrison

AbstractA newly developed hammer was used to insert two autonomous probes 0.8 m and 2.1 m into clast-rich subglacial till under Black Rapids Glacier, Alaska, USA. Both probes were instrumented with a dual-axis tilt sensor and a pore-water pressure transducer. The data are compared to a 75 day record of surface velocities. Till deformation at depth was found to be highly seasonal: it is significant during an early-season speed-up event, but during long periods thereafter measured till deformation rates are negligible. Both tilt records show rotation around the probe axis, which indicates a change in tilt direction of about 30°. The tilt records are very similar, suggesting spatial homogeneity on the scale of the probe separation (4 m horizontal and 3.3 m vertical). There is evidence that during much of the year sliding of ice over till or deformation of a thin till layer (<20 cm) accounts for at least two-thirds of total basal motion. Basal motion accounts for 50–70% of the total surface motion. The inferred amount of ice–till sliding is larger than that found at the same location in a previous study, when surface velocities were about 10% lower. We suggest that variations in ice–till coupling account for the observed variations in mean annual speed.


2018 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Hamed Sadeghi ◽  
Abraham C.F. Chiu ◽  
Charles W.W. Ng ◽  
Fardin Jafarzadeh

2013 ◽  
Vol 50 (12) ◽  
pp. 1294-1305 ◽  
Author(s):  
Nabil Sultan ◽  
Sara Lafuerza

Excess pore-water pressure has a significant effect on submarine slope stability and sediment deformation, and therefore its in situ equilibrium measurement is crucial in carrying out accurate slope stability assessments and accurately deriving geotechnical design parameters. In situ equilibrium pore-water pressure is usually obtained from pore pressure decay during piezocone tests. However, submarine shelves and slopes are often characterized by the existence of low-permeability (fine-grained) sediments involving long dissipation tests that are an important issue for offshore operational costs. Consequently, short-term and (or) partial dissipation tests are usually performed and in situ equilibrium pore-water pressures are predicted from partial measurements. Using a modified cavity expansion approach, this paper aims to predict for four different sites the in situ equilibrium pore-water pressures. Comparisons between predicted and observed in situ equilibrium pore-water pressures allowed the development of a guide to evaluate the minimum time required to perform short-term dissipation tests for a given marine sediment. The main finding of this Note is that the second derivative of the pore pressure, u, versus the logarithm of time, t, ∂2u/∂ln(t)2 must be positive to calculate accurately the in situ equilibrium pore-water pressures from partial measurements.


2016 ◽  
Vol 53 (5) ◽  
pp. 884-888 ◽  
Author(s):  
Will McQueen ◽  
Bruce Miller ◽  
Paul W. Mayne ◽  
Shehab Agaiby

A series of pore-water pressure dissipation records were acquired using a type 2 piezocone penetrometer sounding that was performed in the sensitive Leda clays underlying the Canadian Geotechnical Research site in South Gloucester, Ontario. This note presents the results of the piezocone penetration test (CPTu) sounding and the individual pore-water pressure decays with time that were measured at 1 m vertical intervals, ranging from depths of 2 to 23 m at the site. Using soil behavioral charts, the sounding confirmed the presence of soft sensitive clays. While many of the dissipations were predominantly monotonic, some dilatory response was also observed at shallow depths. Thus, a grouping of dissipatory behaviors was used to infer layers of similar clay characteristics. The results are offered as complementary data to existing in situ and laboratory information that have been collected at this important experimental test site.


Sign in / Sign up

Export Citation Format

Share Document