Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater

2013 ◽  
Vol 27 (3) ◽  
pp. 299-304 ◽  
Author(s):  
M. Nosalewicz ◽  
Z. Stępniewska ◽  
A. Nosalewicz

Abstract Flooded organic soils are potentially important sources of greenhouse gases. The effect of soil temperature and moisture on the concentration of N2O and CO2 at two depths of organic soil flooded with two doses of purified wastewater was studied. Nitrous oxide concentrations at the 10-30 cm depth range were generally increased with an increase in soil moisture, showing dependence on the aeration status of soil. The maximum values of N2O concentrations were higher at the 50-100 than 10-30 cm depth range, but a similar pattern of increasing maximum values of N2O concentration with an increasing input of nitrogen in treatments at both depth ranges was observed. The maximum concentrations of carbon dioxide within the 50-100 cm depth range remained at a similar level in all treatments reaching 7.1-7.7%, which indicated weak relations with the input of water and nitrogen at this depth range. We conclude that the N2O and CO2 concentrations at 10-30 cm depths in the examined organic soil flooded with 600mm year-1 of purified wastewater exhibited a similar level as the concentrations in soil watered only by precipitation.

2017 ◽  
Vol 31 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Wu Haohao ◽  
Xu Xingkai ◽  
Duan Cuntao ◽  
Li TuanSheng ◽  
Cheng Weiguo

AbstractPacked soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m−2) and nitrogen (NH4Cl and KNO3, 4.5 g N m−2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3−-N consumption. Without N addition, the glucose-induced cumulative CO2fluxes ranged from 9.61 to 13.49 g CO2-C m−2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.


Nematology ◽  
2015 ◽  
Vol 17 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Hugues Baimey ◽  
Lionel Zadji ◽  
Leonard Afouda ◽  
Maurice Moens ◽  
Wilfrida Decraemer

The influence of three pesticides on the viability and infectivity of four Beninese isolates of entomopathogenic nematodes (EPN), Heterorhabditis indica Ayogbe1, H. sonorensis Azohoue2, H. sonorensis Ze3, and Steinernema sp. Bembereke, was determined. The impact of both soil temperature and soil moisture on the virulence of these EPN to Trinervitermes occidentalis was investigated in laboratory assays. The effect of EPN-infected Galleria mellonella larvae on underground populations of Macrotermes bellicosus was also examined. All tested Heterorhabditis species were more tolerant to glyphosate and fipronil than the Steinernema species. Heterorhabditis sonorensis Azohoue2, showed the best results with 63.2% termite mortality at a soil temperature of 35°C. The increase of soil moisture to 20% (w/w) did not negatively influence the virulence of tested EPN. The underground populations of 71% or 60% treated nests were controlled by H. sonorensis Azohoue2- or H. indica Ayogbe1-infected G. mellonella larvae, respectively.


2010 ◽  
Vol 19 (7) ◽  
pp. 961 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Gordon C. Garwood ◽  
Kevin Riordan ◽  
Benjamin W. Koziol ◽  
James Slawski

Water content reflectometry is a method used by many commercial manufacturers of affordable sensors to electronically estimate soil moisture content. Field‐deployable and handheld water content reflectometry probes were used in a variety of organic soil‐profile types in Alaska. These probes were calibrated using 65 organic soil samples harvested from these burned and unburned, primarily moss‐dominated sites in the boreal forest. Probe output was compared with gravimetrically measured volumetric moisture content, to produce calibration algorithms for surface‐down‐inserted handheld probes in specific soil‐profile types, as well as field‐deployable horizontally inserted probes in specific organic soil horizons. General organic algorithms for each probe type were also developed. Calibrations are statistically compared to determine their suitability. The resulting calibrations showed good agreement with in situ validation and varied from the default mineral‐soil‐based calibrations by 20% or more. These results are of particular interest to researchers measuring soil moisture content with water content reflectometry probes in soils with high organic content.


AgriPeat ◽  
2019 ◽  
Vol 18 (02) ◽  
pp. 68-81
Author(s):  
Journal Journal

ABSTRACT The aim of this study to known Co2 fluxes in low tide and ombrotrophic peatland on forest land, ex- burns land, rubber tree land, and maize land and to known amount of microbial populations there. Observation method was carried out at the village Kalampangan (ombrotrophic peatland) , Sebangau, Palangka Raya, and at the village Purwodadi (low tide peatland), Maliku, Pulang Pisau, from May to July 2014. Observation variables consist of CO2 fluxes, fluctuations of groundwater levels, soil temperature, soil humidity and microbial populations. The results show that overall carbon dioxide fluxes higher in low tide peatland, with the highest fluxes in burnt areas, 430.24 mg C m-2 h-1, whereas in Ombrotrophic peatland, the highest on 292 forested land, 92 mg C m-2h-1. In Ombrotrophic peatland, relation between fluxes of carbon dioxide and the soil temperature is significant in the burnt areas with a value of R = 0.856 with a quadratic pattern, with the average temperature of 28.89 ° C. Fluxes of carbon dioxide significantly effected by soil moisture that is at a rubber plantation with a value of R = 0.640 with quadraticpatterned, average soil moisture of 0.61 m3/m-3. Fluxes of carbon dioxide to the groundwater depth is significant on a rubber plantation with a value of R = 0.872 with a quadratic pattern, and depth of groundwater on average of 83.74 cm. The populatuin of microorganisms, in forest land 137 sel/ml, rubber plantations 154 sel/ml, cornfields 157 sel/ml and ex-burnt is 80 sel/ml. In Low Tide peatland, fluxes of carbon dioxide to the soil temperature is significant in forest land with the value of R = 0.545 with cubic pattern, and the average temperature of 27,39 oC. Soil moisture has the siginificant effect to fluxes of carbon dioxide that is in the burnt areas with a value of R = 0.617 with patterned quadratic, and average soil moisture of 0.50 m3/m-3. The ground water depth has a siginificant effect to fluxes of carbon dioxide in a cornfield with a value of R = 0.743 with a quadratic pattern, and the depth of soil water on average of 68.98 cm. Population of soil microorganisms, in forest land 73 sel/ml, rubber plantations 36 sel/ml, cornfields 51 sel/ml and ex-burnt 18 sel/ml. Soil temperature, soil moisture, groundwater depth and microoganisms effect on carbon dioxide fluxes. Key words : carbondioxide, fluxes, microorganisms, peatland ABSTRAK Tujuan Penelitian adalah untuk mengetahui pengaruh tipe penggunaan lahan gambut pasang surut dan lahan gambut pedalaman, baik pada hutan alami, eks kebakaran, lahan pertanian (jagung) dan perkebunan karet terhadap fluks karbon dioksida dan mengetahui pengaruh jumlah mikroorganisme terhadap fluks karbon dioksida pada hutan alami, eks kebakaran, lahan pertanian (jagung) dan perkebunan karet pada kedua tipe lahan gambut tersebut. Penelitian dilaksanakan dari tanggal 23 Mei sampai dengan 19 Juli 2014 (2 bulan) di Kalampangan dan Purwodadi (Kanamit). Hasil Penelitian menunjukkan, fluks karbon dioksida secara keseluruhan lebih tinggi di Gambut Pasang Surut dibandingkan dengan di Pedalaman. Rata-rata fluks karbon dioksida di Gambut Pasang Surut, Jurnal AGRI PEAT, Vol. 18 No. 2 , September 2017 : 68 - 81 ISSN :1411 - 6782 69 pada lahan berhutan 285, 22 mg C m-2h-1, pada kebun karet 264,69 mg C m-2h-1, pada kebun jagung 232,08 mg C m-2h-1, pada lahan bekas kebakaran 430,24 mg C m-2h-1. Meskipun demikian, di Gambut Pedalaman, pada lahan berhutan lebih tinggi dibanding di Pasang Surut yaitu 292, 92 mg C m-2h-1, pada kebun karet 224,93 mg C m-2h-1, pada kebun jagung 211,30 mg C m-2h-1, pada lahan bekas kebakaran 228,07 mg C m-2h-1. Di Gambut Pedalaman, hubungan fluks karbon dioksida terhadap suhu tanah yang berpengaruh nyata yaitu pada areal bekas kebakaran dengan nilai R = 0,856 dengan berpola kuadratik, suhu rata-rata 28,89 oC. Fluks karbon dioksida terhadap kelembaban tanah yang berpengaruh nyata yaitu pada kebun karet dengan nilai R = 0,640 dengan berpola kuadratik, kelembaban tanah rata-rata 0,61 m3/m-3. Hubunganfluks karbon dioksida terhadap kedalaman air tanah yang berpengaruh nyata yaitu pada kebun karet dengan nilai R = 0,872 berpola kuadratik dengan kedalaman air tanah rata-rata 83,74 cm. Mikroorganisme, di lahan hutan 137 sel/ml, kebun karet 154 sel/ml, kebun jagung 157 sel/ml dan dilahan bekas kebakaran 80 sel/ml. Di Gambut Pasang Surut, hubungan fluks karbon dioksida terhadap suhu tanah yang berpengaruh nyata yaitu pada lahan hutan dengan nilai R = 0,545 dengan berpola kubik, suhu rata- rata 27,39 oC. Hubungan fluks karbon dioksida terhadap kelembaban tanah yang berpengaruh nyata yaitu pada lahan bekas kebakaran dengan nilai R = 0,617 dengan berpola kuadratik, kelembaban tanah rata-rata 0,50 m3/m-3. Hubungan fluks karbon dioksida terhadap kedalaman air tanah yang berpengaruh nyata yaitu pada kebun jagung dengan nilai R = 0,743 berpola kuadratik dengan kedalaman air tanah rata-rata 68,98 cm. Mikroorganisme, di lahan hutan 73 sel/ml, kebun karet 36 sel/ml, kebun jagung 51 sel/ml dan dilahan bekas kebakaran 18 sel/ml. Suhu tanah, kelembaban tanah, kedalaman air tanah berpengaruh terhadap fluks karbon dioksida dan mikroorganisme pengaruhnya kecil. Kata kunci : carbondioxide, fluxes, microorganisms, peatland


2012 ◽  
Vol 92 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Chunyu Song ◽  
Xingyi Zhang ◽  
Xiaobing Liu ◽  
Yuan Chen

Song, C., Zhang, X., Liu, X. and Chen, Y. 2012. Effect of soil temperature and moisture on soil test P with different extractants. Can. J. Soil Sci. 92: 537–542. Temperature and moisture are important factors affecting adsorption, transformation and the availability of soil phosphorus (P) to plants. The different temperatures and moisture contents at which soil is sampled might affect the results of soil test P (STP). In order to evaluate the effect of the temperature and moisture, as well as the fertilization level, on the results of soil test P, an incubation study involving three soil temperatures (5, 10, and 20°C), and three soil moisture contents (50, 70, 90% of field water-holding capacity) was conducted with Chinese Mollisols collected from four fertilization treatments in a long-term experiment in northeast China. Four soil P test methods, Mehlich 3, Morgan, Olsen and Bray 1 were used to determine STP after a 42-d incubation. The effect of temperature and moisture on STP varied among soil P tests. Averaged across the four fertilization treatments, the temperature had significant impact on STP, while the responses varied among soil P test methods. Mehlich 3, Morgan and Bray 1 STP decreased and Olsen STP increased with increase in temperature. Effect of soil moisture was only significant for Mehlich 3 P and Olsen P. Soil temperature had greater impact on STP than soil moisture content. The responses of the Olsen method to temperature differed from the other three methods tested. The interaction between soil temperature and soil moisture on soil test P was only significant for Mehlich 3 P. Fertilization level does not affect the STP in as a clear pattern as the temperature and moisture varied for all four methods. Consistent soil sampling conditions, especially the soil temperature, appear to be the first step to achieve a reliable STP for any soil P test.


2008 ◽  
Vol 98 (10) ◽  
pp. 1144-1152 ◽  
Author(s):  
B. M. Wu ◽  
K. V. Subbarao

Extensive studies have been conducted on the carpogenic germination of Sclerotinia sclerotiorum, but carpogenic germination in S. minor has not been studied adequately. It remains unclear why apothecia of this pathogen have seldom been observed in nature. In this study, a new method was developed to produce apothecia in the absence of soil or sand, and carpogenic germination without preconditioning was recorded for 95 of the 96 S. sclerotiorum isolates tested. Carpogenic germination of the two species was compared under a variety of temperature, soil moisture, burial depths, and short periods of high temperature and low soil moisture. The optimal temperatures for rapid germination and for maximum germination rates were both lower for S. minor than for S. sclerotiorum. The temperature range for carpogenic germination was also narrower for S. minor than for S. sclerotiorum. A 5-day period at 30°C, either starting on the 10th or 20th day of incubation, did not significantly affect carpogenic germination of S. sclerotiorum. For both S. minor and S. sclerotiorum, the percentage of carpogenically germinated sclerotia increased as soil water potential increased from –0.3 to –0.01 MPa. In the greenhouse, a 10- or 20-day dry period completely arrested carpogenic germination of S. sclerotiorum, and new apothecia appeared after an interval of 35 days following rewetting, similar to the initial carpogenic germination regardless of when the dry period was imposed. In naturally infested fields, the number of sclerotia in 100 cc of soil decreased as depth increased from 0 to 10 cm before tillage, but became uniform between 0 and 10 cm after conventional tillage for both species. Most apothecia of S. minor were, however, produced from sclerotia located at a depth shallower than 0.5 cm while some apothecia of S. sclerotiorum were produced from sclerotia located as deep as 4 to 5 cm. These results provide the much needed information to assess the epidemiological roles of inoculum from sexual reproduction in diseases caused by the two Sclerotinia species in different geographical regions. However, more studies on effects of shorter and incompletely dry periods are still needed to predict production of apothecia of S. sclerotiorum in commercial fields under fluctuating soil temperature and moisture.


1973 ◽  
Vol 105 (4) ◽  
pp. 577-580 ◽  
Author(s):  
Merle Shepard

AbstractMelanotus communis (Gyllenhal) larvae were introduced into temperature gradient columns containing moist or dry organic soil. In other experiments certain sections of the columns contained moist soil while soil in the remaining sections was dry.Moist soil caused M. communis larvae to aggregate at higher temperature levels (24 °C) whereas dry soil evoked a positive response to the coolest level (10 °C). Cool (10 °C), moist sections attracted most of the wireworms while sections containing moisture at the highest temperature level caused a bimodal pattern of aggregation with M. communis larvae moving to both cool–dry or hot–moist conditions.Differences in geotactic responses by M. communis larvae did not occur when the column was positioned vertically or horizontally.


1968 ◽  
Vol 100 (8) ◽  
pp. 801-807 ◽  
Author(s):  
J. Lafrance

AbstractA 4-year study in the virgin organic soils of southwestern Quebec revealed that most elaterid larvae moved from the subsurface to the top 10 in. of soil in early May, when the soil temperature at a depth of 4 in. was approximately 35°F. This upward movement readied its peak when the topsoil moisture content was 200% and the soil temperature at 4 in., 55°F. In early June, when the soil temperature reached 67°F, the larvae began to move downward and very few larvae were found in the first top layers of soil when the temperature was above 72°F. This downward movement lasted until the end of August and again the larvae moved up to feed near the surface of the soil until the first frost, usually recorded in mid-November. The data indicate that June to early September is generally the most favourable period for growing vegetables.


Sign in / Sign up

Export Citation Format

Share Document