scholarly journals Determining Crystallite Size Using Scherrer Formula, Williamson-Hull Plot, and Particle Size with SEM

2018 ◽  
Vol 19 (1) ◽  
pp. 28 ◽  
Author(s):  
Made Sumadiyasa ◽  
I.B.S. Manuaba

It has been determined the crystallite size by XRD technique using Scherrer equation and Williamson-Hull Plot method. While the particle size is determined by SEM using Image-J software. For this purpose, synthesized samples of compound Gd0,95La0.05Ba2Cu3O7-d phase. From the calculation results, obtained the crystallite size in nanometers order, however the crystallite size resulting from the Scherrer equations and Scherrer Modified is different, i.e. 63.1675 nm and 67.0005 nm.  The results of the crystallite size calculation by the scherrer equation directly and modified differed from that of the Williamson-Hull Plot method (97,3040 nm). Meanwhile, the results of the Williamson-Hull Plot methods and SEM show almost the same value (98.7297nm).

Author(s):  
Malcolm Stein ◽  
Chien-Fan Chen ◽  
Matthew Mullings ◽  
David Jaime ◽  
Audrey Zaleski ◽  
...  

Particle size plays an important role in the electrochemical performance of cathodes for lithium-ion (Li-ion) batteries. High energy planetary ball milling of LiNi1/3Mn1/3Co1/3O2 (NMC) cathode materials was investigated as a route to reduce the particle size and improve the electrochemical performance. The effect of ball milling times, milling speeds, and composition on the structure and properties of NMC cathodes was determined. X-ray diffraction analysis showed that ball milling decreased primary particle (crystallite) size by up to 29%, and the crystallite size was correlated with the milling time and milling speed. Using relatively mild milling conditions that provided an intermediate crystallite size, cathodes with higher capacities, improved rate capabilities, and improved capacity retention were obtained within 14 μm-thick electrode configurations. High milling speeds and long milling times not only resulted in smaller crystallite sizes but also lowered electrochemical performance. Beyond reduction in crystallite size, ball milling was found to increase the interfacial charge transfer resistance, lower the electrical conductivity, and produce aggregates that influenced performance. Computations support that electrolyte diffusivity within the cathode and film thickness play a significant role in the electrode performance. This study shows that cathodes with improved performance are obtained through use of mild ball milling conditions and appropriately designed electrodes that optimize the multiple transport phenomena involved in electrochemical charge storage materials.


2015 ◽  
Vol 1112 ◽  
pp. 57-61 ◽  
Author(s):  
Amalia Sholehah ◽  
Akhmad Herman Yuwono

In the present work, ZnO nanostructures were synthesized via wet chemistry method. The seeding solution was prepared from zinc nitrate tetrahydrate and hexamethylenetetramine. Prior to the heating process, the seeding solution was immersed in cold bath (0°C). XRD analysis had shown sharp peaks in diffractogram, indicating the high crystallinity of ZnO nanostructures. The crystallite size was determined using Scherrer equation and Williamson-Hall method. Other relevant parameters including stress, strain, and energy density were calculated using Williamson-Hall assuming UDM, UDSM, and UDEDM. The results had revealed that crystallite size calculated with Williamson-Hall method is more accurate than Scherrer equation.


2010 ◽  
Vol 660-661 ◽  
pp. 52-57 ◽  
Author(s):  
Kaline Melo de Souto Viana ◽  
Bruno Brito Dantas ◽  
N.A.S. Nogueira ◽  
J.M. Sasaki ◽  
Normanda Lino de Freitas ◽  
...  

The aim of this work is to evaluate the influence of fuel in the synthesis of ZnAl2O4 catalytic supports by combustion reaction. For this, it was used the fuels: urea, carbohidrazide, glycine and aniline. The total amount of reagents was calculated according to the theory of propellants and explosive using urea in the stoichiometric proportion (Φe = 1). The structural and morphological characteristics of the powders were evaluated by XRD, FTIR, TEM, SEM and particle size distribution. The results from XRD showed the formation of the normal cubic spinel structure. The powders presented nanosized particles with narrow agglomerates size distribution. The powders prepared with urea showed better value of surface area and smaller crystallite size.


2019 ◽  
Vol 32 (1) ◽  
pp. 147-152
Author(s):  
V.T. Geetha ◽  
G. Puthilibai ◽  
S. Induja

Hexagonal shape Nd doped Mn3O4 samples were prepared via microwave route using urea as reducing agent. Nd doped Mn3O4 magnetic, structural, optical and morphological properties of the synthesized hexagonal like particles were examined by diffused reflectance spectroscopy (DRS) and photoluminescence (PL), XRD, SEM, TEM and vibrating sample measurements (VSM) studies. Morphological results showed the hexagonal shape morphology and uniform size dispersal. The crystallite size and the particle size calculated and the TEM monographs designate the correlation of the data obtained from both measurements. It could be noted that saturation magnetization (Ms) and remanence (Mr) values reduce by maximizing neodymium replacement.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ángela B. Sifontes ◽  
Edgar Cañizales ◽  
Jhoan Toro-Mendoza ◽  
Edward Ávila ◽  
Petra Hernández ◽  
...  

Here we report the synthesis of barium sulphate (BaSO4) nanoparticles from Ba(OH)2/BaCl2solutions by a combined method of precipitation and quenching in absence of polymer stabilizers. Transmission electron microscopy (HRTEM), Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were employed to characterize the particles. The Scherrer formula was applied to estimate the particle size using the width of the diffraction peaks. The obtained results indicate that the synthesized material is mainly composed of nanocrystalline barite, with nearly spherical morphology, and diameters ranging from 4 to 92 nm. The lattice images of nanoparticles were clearly observed by HRTEM, indicating a high degree of crystallinity and phase purity. In addition, agglomerates with diameters between 20 and 300 nm were observed in both lattice images and dynamic light scattering measurements. The latter allowed obtaining the particle size distribution, the evolution of the aggregate size in time of BaSO4in aqueous solutions, and the sedimentation rate of these solutions from turbidimetry measurements. A short discussion on the possible medical applications is presented.


2008 ◽  
Vol 587-588 ◽  
pp. 468-472
Author(s):  
J.M. González ◽  
José A. Rodríguez ◽  
Enrique J. Herrera

Nickel powder was dry-milled using a high-energy disc-oscillating mill. The average particle size increases and the specific surface area diminishes with milling time. Crystallite size decreases and microstrains increase, under the same conditions, as shown by X-ray analysis. At 120 min milling time, the crystallite size has a value of 17 nm, i.e., a nanostructured powder, with a perturbed lattice, is obtained. The above results have been compared with published data about the effects of milling on a ceramic powder. There is, in both cases, a general agreement concerning the changes produced in crystallite size. Nevertheless, opposite results are reached regarding particle size and specific surface area.


2018 ◽  
Vol 4 (3) ◽  
pp. 287
Author(s):  
Heru Setyawan

Bipolar diffusion charging of aerosol particles has been studied theoretically using Fuchs theory. Experimental data measured by several researchers available in the published literature were used to verify the calculation results. The calculation results show that Fuchs theory has been successfully used to predict the experimental data of the charging probability of submicron aerosol particles. The combination probability of ion-particle increases with the increase of particle size, both for particle and ion with the same sign and those with the opposite sign. However the combination probability is larger if the charges of particle and ion are of the opposite sign. Generally, Fuchs theory is not too easy to deal with due to the ill-defined of all parameters used, namely ion mass and ion mobility. These cause many possibilities of parameter combination that can give a good agreement with experimental data. Thus, in order to interpret the experimental results properly, the two parameters should be measured simultaneously with aerosol measurements.Keywords: Aerosol, Bipolar Charging, Combination ProbabilityAbstrakPemuatan listrik difusi bipolar partikel aerosol telah dipelajari secara teoritis menggunakan teori Fuchs. Sebagai verifikasi digunakan data eksperimen beberapa peneliti yang tersedia dalam literatur yang telah dipublikasikan. Hasil perhitungan menunjukkan bahwa teori Fuchs berhasil memprediksi dengan baik data eksperimen probabilitas pemuatan listrik partikel aerosol dalam rentang ukuran partikel berukuran submikron. Probabilitas penggabungan ion-partikel semakin besar dengan semakin besarnya ukuran partikel, baik untuk partikel dan ion yang memiliki tanda yang berlawanan maupun yang memiliki tanda yang sama. Akan tetapi, probabilitas penggabungan untuk partikel dan ion yang memiliki tanda yang berlawanan memiliki nilai yang lebih besar. Pada umumnya teori Fuchs tidak terlalu mudah untuk digunakan yang disebabkan oleh tidak terdefinisikannya dengan baik semua parameter yang digunakan, yaitu  massa ion dan mobilitas ion. Hal ini mengakibatkan banyak kemungkinan kombinasi parameter yang bisa menghasilkan kesesuaian yang bagus dengan data hasil pengukuran. Jadi, agar dapat menginterpretasikan hasil pengukuran dengan tepat, kedua besaran tersebut harus diukur secara serempak denganpengukuran aerosol.Kata Kunci: Aerosol, Pemuatan Listrik Bipolar, Probabilitas Penggabungan


2011 ◽  
Vol 04 (03) ◽  
pp. 283-287 ◽  
Author(s):  
H. KHANMOHAMMADI ◽  
S. A. SEYYED EBRAHIMI

Nd -doped M -type Strontium hexaferrite powders with composition of Sr 1-x Nd x Fe 12 O 19(x = 0, 0.1, 0.2) were prepared by conventional ceramic method at various calcination temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for characterization of the obtained powders. The results showed that by increasing Nd doping, the single phase magnetoplumbite structure has been formed at higher temperatures. The average crystallite size of the samples calculated by the Scherrer formula indicates that Nd -doping resulted in a significant decrease in the mean crystallite size. The hexaferrite-polymer bulk composites in epoxy resin matrix, with ferrite ratio of 90 wt.%, were also prepared. The microwave absorption properties of these composites were investigated in 8–12 GHz frequency range by means of a vector network analyzer. Due to the reflection loss measurements, Nd -doped Sr -hexaferrite could be a promising material for microwave absorption applications in X-band.


2019 ◽  
Vol 5 (1) ◽  
pp. 603-606
Author(s):  
Almaw Ayele Aniley ◽  
S.K. Naveen Kumar ◽  
A. Akshaya Kumar

Here, NiMn2O4 and NiZn0.2Mn1.8O4 nanocrystalline ceramic powders are fabricated, characterized, and compared for thermistor applications. Solution route was used to synthesize the materials. The NiMn2O4 is a spinel single crystal material with the average crystallite size 26.82 nm and a particle size less than 1 μm and has uniform morphology. The EDS results confirmed the composition of NiMn2O4 that consisted of Ni, Mn, and O2 only. The average crystallite size of NiZn0.2Mn1.8O4 is 37.48 nm and the particle size is less than 0.5 μm. There has been observed some agglomeration formation due to high calcination temperature. The β-value of NiMn2O4 is larger than NiZn0.2Mn1.8O4, hence thermistors constructed from NiMn2O4 are more stable and applicable as NTCR thermistor powder.


Sign in / Sign up

Export Citation Format

Share Document