scholarly journals Hukum Minimum Liebig - Sebuah Ulasan dan Aplikasi Dalam Biologi Kontemporer

2018 ◽  
Vol 18 (1) ◽  
pp. 28 ◽  
Author(s):  
Wendy Achmmad Mustaqim

Optimum plant growth depends on numerous ecological factors. In relation to this theme, there is an old law called Law of the Minimum Liebig. The postulate discussed the growth of the plant that is determined by the scarcest environmental factors. It is one of the oldest ecological postulate proposed more than one and a half-century ago. It has become one of the most important foundations for agriculture and biology, even the in contemporary biology. This short review will provide the history, principles, development and criticism, and applications in some recent biological sciences, including evolution, conservation, ecological indicator and even climate change.

2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Zhang ◽  
Jian Sun ◽  
Junnan Xiong

Evapotranspiration (ET) is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p<0.0001), precipitation (R > 0.89, p < 0.0001), and NDVI (R > 0.75, p < 0.0001), but a negative correlation between ET and radiation (R = 0.76, p < 0.0001) was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.


2019 ◽  
Vol 49 ◽  
pp. 148-149
Author(s):  
Javakhadze R. ჯავახაძე რ. ◽  
Turmanauli M. თურმანაული მ. ◽  
Kverenchkhiladze R. კვერენჩხილაძე რ. ◽  
Chikovani A. ჩიქოვანი ა. ◽  
Arabidze M. არაბიძე მ. ◽  
...  

One of the actual global problems of mankind is an environmental pollution and its negative impact on a population’s health, that is the basis of existence of each human being and the entire state. The purpose of this article is to inform the public about the environmental factors affecting human health and its causes.As there is significant rise of ecological diseases, in many countries worldwide during the last years a great attention is paid to the legal side of environmental protection. Public well being is determined by ensuring its sanitaryepidemiological conditions,safe environment and disease prevention.


2021 ◽  
Author(s):  
Lena Reifschneider ◽  
Vinzenz Franz Eichinger ◽  
Evelin Pihlap ◽  
Noelia Garcia-Franco ◽  
Anna Kühnel ◽  
...  

&lt;p&gt;The application of rock powder is an option to improve soil fertility while valorising the overburden material produced by industries. The &amp;#8220;enhanced weathering&amp;#8221; of silicate rock has also gained recent interest in the scientific community for its potential to mitigate climate change. However, the effect of rock powder on the soil physical properties remains unclear, especially under climate change (e.g., increasing drought events). Prior to any large scale application of rock powder, it is crucial to disentangle the potential effects of rock powder application on its environment. In a mesocosm experiment, we explored the effect of three rock powders on plant biomass, soil aggregation and organic carbon (OC) allocation within aggregates, in two soils with clayey and sandy textures, under regular watering or severe drought conditions. We demonstrate that the rock powder was the third factor after drought and soil texture significantly affecting the plant growth, resulting in a significant plant biomass decrease ranging from - 13 % to - 42 % compared with the control. We mainly attribute this effect to the increase of the already neutral soil pH, along with the release of excessive heavy metal amounts at a toxic range for the plant. Yet, we found that adding rock powder to the soil resulted in an increase of the relative amount of microaggregates in the soil by up to + 70 %, along with a re-distribution of OC within the fine fractions of the soil (up to + 32 % of OC in &lt; 250 &amp;#181;m fractions). The new mineral-mineral and organo-mineral interactions promoted by the rock powder addition could potentially favour OC persistence in soil on the long term. With our results, we insist on the potential risks for plant growth associated to the application of rock powder when not handled properly. In addition to the current enthusiasm around the capacity of rock powder to enhance carbon sequestration in the inorganic form, we also encourage scientists to focus their research on its effect on soil structure properties and OC storage.&lt;/p&gt;


Author(s):  
Nicolae Bodrug ◽  

. Environmental pollution affects population health depending on the extension and the degree of exposure to environmental factors. In most cases it is difficult to obtain an accurate situation of exposure of population to harmful factors. Health status is determined by: human biology, ecological factors, the socio-economic situation of each person, and the quality of medical services. In according to regional peculiarities the interdependence of those factors could vary, but not significantly. The environmental risks are everywhere but diminishing them may improve the health status of the population.


Sign in / Sign up

Export Citation Format

Share Document